1 |
Apperley JF. Chronic myeloid leukaemia[J]. Lancet, 2015, 385(9976): 1447-1459.
|
2 |
Chereda B, Melo JV. Natural course and biology of CML[J]. Ann Hematol, 2015, 94(): S107-S121.
|
3 |
Quintás-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia[J]. Blood, 2009, 113(8): 1619-1630.
|
4 |
Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring[J]. Am J Hematol, 2018, 93(3): 442-459.
|
5 |
Waller CF. Imatinib mesylate[J]. Recent Results Cancer Res, 2018, 212: 1-27.
|
6 |
Soverini S, Mancini M, Bavaro L, et al. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy[J]. Mol Cancer, 2018, 17(1): 49.
|
7 |
Singh VK, Coumar MS. Chronic myeloid leukemia: existing therapeutic options and strategies to overcome drug resistance[J]. Mini Rev Med Chem, 2019, 19(4): 333-345.
|
8 |
Wang Q, Gao S, Wu GZ, et al. Total sesquiterpene lactones isolated from Inula helenium L. attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice[J]. Phytomedicine, 2018, 46: 78-84.
|
9 |
Li ZL, Qin BY, Qi XG, et al. Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1[J]. Arch Pharm Res, 2016, 39(10): 1441-1453.
|
10 |
Huang R, Kang Q, Liu HM, et al. New insights into the molecular resistance mechanisms of chronic myeloid leukemia[J]. Curr Cancer Drug Targets, 2016, 16(4): 323-345.
|
11 |
Yin B, Fang DM, Zhou XL, et al. Natural products as important tyrosine kinase inhibitors[J]. Eur J Med Chem, 2019, 182: 111664.
|
12 |
Shi XP, Chen X, Li XF, et al. Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation[J]. Clin Cancer Res, 2014, 20(1): 151-163.
|
13 |
Lu XX, Geng JJ, Zhang JM, et al. Xanthohumol, a prenylated flavonoid from hops, induces caspase-dependent degradation of oncoprotein BCR-ABL in K562 cells[J]. Antioxidants (Basel), 2019, 8(9): E402.
|
14 |
Lan XY, Zhao C, Chen X, et al. Platinum pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via DUB inhibition-dependent caspase activation and Bcr-Abl downregulation[J]. Cell Death Dis, 2017, 8(7): e2913.
|
15 |
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease[J]. Immunity, 2019, 50(6): 1352-1364.
|
16 |
D′Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
|
17 |
Veluthakal R, Arora DK, Goalstone ML, et al. Metabolic stress induces caspase-3 mediated degradation and inactivation of farnesyl and geranylgeranyl transferase activities in pancreatic β-cells[J]. Cell Physiol Biochem, 2016, 39(6): 2110-2120.
|
18 |
Ethell DW, Bossy-Wetzel E, Bredesen DE. Caspase 7 can cleave tumor necrosis factor receptor-I (p60) at a non-consensus motif, in vitro[J]. Biochim Biophys Acta, 2001, 1541(3): 231-238.
|
19 |
di Bacco AM, Cotter TG. p53 expression in K562 cells is associated with caspase-mediated cleavage of c-ABL and BCR-ABL protein kinases[J]. Br J Haematol, 2002, 117(3): 588-597.
|