Journal of Shanghai Jiao Tong University (Medical Science) >
Progress of cardioprotection effect of sodium-glucose cotransporter 2 inhibitor on patients with type 2 diabetes
Received date: 2019-12-23
Online published: 2021-04-06
As a novel anti-diabetes drug, sodium-glucose cotransporter 2 inhibitor (SGLT2i) can decrease the all-cause mortality, the risk of major adverse cardiac event (MACE) and rate of heart failure hospitalization in patients with type 2 diabetes. Studies found that besides the function of glycemic control, SGLT2i could reduce the preload and afterload of heart, improve the hemodynamics, attenuate myocardial fibrosis and rejuvenate myocardial energetics. In this paper, clinical trials about SGLT2i in recent years and the mechanisms are reviewed to discuss the progress of the cardioprotection effect of SGLT2i on patients with type 2 diabetes.
Min SUN , Dong-ying ZHANG . Progress of cardioprotection effect of sodium-glucose cotransporter 2 inhibitor on patients with type 2 diabetes[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021 , 41(3) : 391 -395 . DOI: 10.3969/j.issn.1674-8115.2021.03.019
1 | 申珂, 郭娜娜, 邓健,等. 中国近 40 年慢性病疾病谱变化情况[J]. 山西医药杂志, 2017, 46(8): 903-905. |
2 | Galbete A, Cambra K, Forga L, et al. Achievement of cardiovascular risk factor targets according to sex and previous history of cardiovascular disease in type 2 diabetes: a population-based study[J]. J Diabetes Complicat, 2019, 33(12): 107445. |
3 | Association AD. Standards of medical care in diabetes: 2020 abridged for primary care providers[J]. Clin Diabetes, 2020, 38(1): 10-38. |
4 | Zhu JH, Yu XX, Zheng YY, et al. Association of glucose-lowering medications with cardiovascular outcomes: an umbrella review and evidence map[J]. Lancet Diabetes Endocrinol, 2020, 8(3): 192-205. |
5 | Douros A, Dell'Aniello S, Yu OHY, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study[J]. BMJ, 2018, 362: k2693. |
6 | Turner RC, Holman RR, Cull CA, et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 837-853. |
7 | Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358(24): 2545-2559. |
8 | Schnell O, Standl E, Catrinoiu D, et al. Report from the 1st cardiovascular outcome trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD study group[J]. Cardiovasc Diabetol, 2016, 15: 33. |
9 | Basile J. A new approach to glucose control in type 2 diabetes: the role of kidney sodium-glucose co-transporter 2 inhibition[J]. Postgrad Med, 2011, 123(4): 38-45. |
10 | Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects[J]. Nat Rev Endocrinol, 2012, 8(8): 495-502. |
11 | Han SP, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats[J]. Diabetes, 2008, 57(6): 1723-1729. |
12 | Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus[J]. Indian Heart J, 2018, 70(6): 915-921. |
13 | Powell J, Miller SA, Taylor JR. Sodium-glucose cotransporter 2 inhibitors: the new option for diabetes mellitus management[J]. South Med J, 2015, 108(2): 82-90. |
14 | Allegretti AS, Zhang WB, Zhou WJ, et al. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD[J]. Am J Kidney Dis, 2019, 74(3): 328-337. |
15 | Ku EJ, Lee DH, Jeon HJ, et al. Empagliflozin versus dapagliflozin in patients with type 2 diabetes inadequately controlled with metformin, glimepiride and dipeptidyl peptide 4 inhibitors: a 52-week prospective observational study[J]. Diabetes Res Clin Pract, 2019, 151: 65-73. |
16 | 高武通. 钠葡萄糖同向转运蛋白2抑制剂治疗2型糖尿病的研究新进展[J]. 浙江医学, 2018, 40(16): 1882-1885. |
17 | Matthews D, Fulcher G, Perkovic V, et al. Efficacy and safety of Canagliflozin (CANA), an inhibitor of Sodium Glucose Co-Transporter 2 (SGLT2), added on to insulin therapy with or without oral agents in type 2 diabetes (T2D)[J]. Diabetol Und Stoffwechsel, 2013, 8(S01). DOI: 10.1055/s-0033-1341911. |
18 | Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128. |
19 | Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J]. Circulation, 2017, 136(3): 249-259. |
20 | Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7): 644-657. |
21 | Patorno E, Goldfine AB, Schneeweiss S, et al. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study[J]. BMJ, 2018, 360: k119. |
22 | Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study[J]. J Am Coll Cardiol, 2018, 71(23): 2628-2639. |
23 | Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4): 347-357. |
24 | McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. |
25 | Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet, 2019, 393(10166): 31-39. |
26 | Ghezzi C, Yu AS, Hirayama BA, et al. Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule[J]. J Am Soc Nephrol, 2017, 28(3): 802-810. |
27 | Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure[J]. JAMA Cardiol, 2017, 2(9): 939-940. |
28 | Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab, 2018, 20(3): 479-487. |
29 | Li CG, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol, 2019, 18(1): 15. |
30 | Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure From molecules to man (Part II) [J]. Cardiovasc Pathol, 2005, 14(2): 49-60. |
31 | Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med, 2017, 104: 298-310. |
32 | Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart utilizes ketone bodies as an energy source[J]. Metab Clin Exp, 2017, 77: 65-72. |
33 | Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review[J]. Diabetologia, 2018, 61(10): 2108-2117. |
/
〈 |
|
〉 |