Review

Initiation and regulatory mechanism of C9ORF72 (G4C2)n RAN translation

  • Yiyuan FENG ,
  • Zhongyun XU ,
  • Lin DING ,
  • Yafu YIN ,
  • Hui WANG ,
  • Weiwei CHENG
Expand
  • 1.Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    2.Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
CHENG Weiwei, E-mail: wcheng37@outlook.com.

Received date: 2022-01-10

  Accepted date: 2022-06-14

  Online published: 2022-12-02

Supported by

National Natural Science Foundation of China(81901162);Shanghai Rising-Star Program(20QA1406300)

Abstract

As one of the main pathogenic mechanisms of the microsatellite repeat expansion diseases, the repeats from the abnormal DNA expansion produce toxic proteins through repeat-associated non-AUG (RAN) translation, which can causes neuronal death. Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons, while frontotemporal dementia (FTD) is a less common early-onset dementia compared to Alzheimer′s disease. C9ORF72 (G4C2)n abnormal expansion is the most common cause of ALS/FTD. Three mechanisms have been proposed for abnormal expansion of (G4C2)n in C9ORF72: ① The C9ORF72 loss-of-function results from the transcription suppression of C9ORF72 caused by the abnormal expansion of (G4C2)n in C9ORF72. ② The RNA foci from the abnormal expansion of (G4C2)n in C9ORF72, which bind to multiple RNA binding protein (RBP), lead to the dysfunction of these RBP. ③ The repeats from the abnormal expansion of (G4C2)n in C9ORF72 undergoing RAN translation produce the dipeptide repeat proteins (DPRs), which results in their toxic gain-of-function. Many studies have evidenced that RAN translation plays a pivotal role in disease progression. While a lot of studies focus on the pathologic mechanism of DPRs, the initiation and regulation mechanism of C9ORF72 (G4C2)n RAN translation is unknown and severely hinders the application of RAN translation as the therapeutic target in ALS/FTD. This review summarizes the most updated literatures on initiation and regulation mechanism of C9ORF72 (G4C2)n RAN translation and discusses the feasibility of reducing cellular toxicity and increasing neuron survival by targeting C9ORF72 (G4C2)n RAN translation.

Cite this article

Yiyuan FENG , Zhongyun XU , Lin DING , Yafu YIN , Hui WANG , Weiwei CHENG . Initiation and regulatory mechanism of C9ORF72 (G4C2)n RAN translation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(10) : 1482 -1489 . DOI: 10.3969/j.issn.1674-8115.2022.10.015

References

1 NELSON D L, ORR H T, WARREN S T. The unstable repeats: three evolving faces of neurological disease[J]. Neuron, 2013, 77(5): 825-843.
2 CASTELLI L M, HUANG W P, LIN Y H, et al. Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders[J]. Biochem Soc Trans, 2021, 49(2): 775-792.
3 MACDONALD M E, AMBROSE C M, DUYAO M P, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group[J]. Cell, 1993, 72(6): 971-983.
4 VERKERK A J, PIERETTI M, SUTCLIFFE J S, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J]. Cell, 1991, 65(5): 905-914.
5 BROOK J D, MCCURRACH M E, HARLEY H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 69(2): 385.
6 FU Y H, PIZZUTI A, FENWICK R G Jr, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy[J]. Science, 1992, 255(5049): 1256-1258.
7 DEJESUS-HERNANDEZ M, MACKENZIE I R, BOEVE B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72(2): 245-256.
8 BANEZ-CORONEL M, RANUM L P W. Repeat-associated non-AUG (RAN) translation: insights from pathology[J]. Lab Invest, 2019, 99(7): 929-942.
9 ZU T, GIBBENS B, DOTY N S, et al. Non-ATG-initiated translation directed by microsatellite expansions[J]. Proc Natl Acad Sci USA, 2011, 108(1): 260-265.
10 TODD P K, OH S Y, KRANS A, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome[J]. Neuron, 2013, 78(3): 440-455.
11 SELLIER C, BUIJSEN R A M, HE F, et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome[J]. Neuron, 2017, 93(2): 331-347.
12 MORI K, WENG S M, ARZBERGER T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS[J]. Science, 2013, 339(6125): 1335-1338.
13 GENDRON T F, BIENIEK K F, ZHANG Y J, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS[J]. Acta Neuropathol, 2013, 126(6): 829-844.
14 ASH P E, BIENIEK K F, GENDRON T F, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS[J]. Neuron, 2013, 77(4): 639-646.
15 BA?EZ-CORONEL M, AYHAN F, TARABOCHIA A D, et al. RAN translation in Huntington disease[J]. Neuron, 2015, 88(4): 667-677.
16 RENTON A E, MAJOUNIE E, WAITE A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[J]. Neuron, 2011, 72(2): 257-268.
17 SMITH B N, NEWHOUSE S, SHATUNOV A, et al. The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder[J]. Eur J Hum Genet, 2013, 21(1): 102-108.
18 MAJOUNIE E, RENTON A E, MOK K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study[J]. Lancet Neurol, 2012, 11(4): 323-330.
19 MACKENZIE I R, ARZBERGER T, KREMMER E, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations[J]. Acta Neuropathol, 2013, 126(6): 859-879.
20 ZU T, LIU Y J, BA?EZ-CORONEL M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia[J]. Proc Natl Acad Sci USA, 2013, 110(51): E4968-E4977.
21 LOPEZ-GONZALEZ R, LU Y B, GENDRON T F, et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons[J]. Neuron, 2016, 92(2): 383-391.
22 ZHANG Y J, GENDRON T F, GRIMA J C, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins[J]. Nat Neurosci, 2016, 19(5): 668-677.
23 GENDRON T F, BELZIL V V, ZHANG Y J, et al. Mechanisms of toxicity in C9FTLD/ALS[J]. Acta Neuropathol, 2014, 127(3): 359-376.
24 ZHANG K J, WANG A L, ZHONG K K, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model[J]. Neuron, 2021, 109(12): 1949-1962.e6.
25 TABET R, SCHAEFFER L, FREYERMUTH F, et al. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts[J]. Nat Commun, 2018, 9(1): 152.
26 GREEN K M, GLINEBURG M R, KEARSE M G, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response[J]. Nat Commun, 2017, 8(1): 2005.
27 CHENG W W, WANG S P, MESTRE A A, et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation[J]. Nat Commun, 2018, 9(1): 51.
28 CLEARY J D, RANUM L P. New developments in RAN translation: insights from multiple diseases[J]. Curr Opin Genet Dev, 2017, 44: 125-134.
29 WOJCIECHOWSKA M, OLEJNICZAK M, GALKA-MARCINIAK P, et al. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders[J]. Nucleic Acids Res, 2014, 42(19): 11849-11864.
30 GOODMAN L D, PRUDENCIO M, SRINIVASAN A R, et al. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS[J]. Acta Neuropathol Commun, 2019, 7(1): 62.
31 COOPER-KNOCK J, WALSH M J, HIGGINBOTTOM A, et al. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions[J]. Brain, 2014, 137(Pt 7): 2040-2051.
32 JODOIN R, CARRIER J C, RIVARD N, et al. G-quadruplex located in the 5' UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance[J]. Nucleic Acids Res, 2019, 47(19): 10247-10266.
33 WOLFE A L, SINGH K, ZHONG Y, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer[J]. Nature, 2014, 513(7516): 65-70.
34 HAEUSLER A R, DONNELLY C J, PERIZ G, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease[J]. Nature, 2014, 507(7491): 195-200.
35 ?KET P, POHLEVEN J, KOVANDA A, et al. Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration[J]. Neurobiol Aging, 2015, 36(2): 1091-1096.
36 BRCIC J, PLAVEC J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism[J]. Nucleic Acids Res, 2018, 46(21): 11605-11617.
37 SUN Y J, ATAS E, LINDQVIST L, et al. The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase[J]. Nucleic Acids Res, 2012, 40(13): 6199-6207.
38 HARMS U, ANDREOU A Z, GUBAEV A, et al. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle[J]. Nucleic Acids Res, 2014, 42(12): 7911-7922.
39 WESTERGARD T, MCAVOY K, RUSSELL K, et al. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress[J]. EMBO Mol Med, 2019, 11(2): e9423.
40 ZU T, GUO S, BARDHI O, et al. Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice[J]. Proc Natl Acad Sci USA, 2020, 117(31): 18591-18599.
41 SONOBE Y, GHADGE G, MASAKI K, et al. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress[J]. Neurobiol Dis, 2018, 116: 155-165.
42 HOLCIK M, SONENBERG N. Translational control in stress and apoptosis[J]. Nat Rev Mol Cell Biol, 2005, 6(4): 318-327.
43 ORTEGA J A, DALEY E L, KOUR S, et al. Nucleocytoplasmic proteomic analysis uncovers eRF1 and nonsense-mediated decay as modifiers of ALS/FTD C9orf72 toxicity[J]. Neuron, 2020, 106(1): 90-107.e13.
44 JOVI?I? A, MERTENS J, BOEYNAEMS S, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS[J]. Nat Neurosci, 2015, 18(9): 1226-1229.
45 KRAMER N J, HANEY M S, MORGENS D W, et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity[J]. Nat Genet, 2018, 50(4): 603-612.
46 MAOR-NOF M, SHIPONY Z, LOPEZ-GONZALEZ R, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR)[J]. Cell, 2021, 184(3): 689-708.e20.
47 BERSON A, GOODMAN L D, SARTORIS A N, et al. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies[J]. Acta Neuropathol Commun, 2019, 7(1): 65.
48 HAUTBERGUE G M, CASTELLI L M, FERRAIUOLO L, et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits[J]. Nat Commun, 2017, 8: 16063.
49 WANG S P, LATALLO M J, ZHANG Z, et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD[J]. Nat Commun, 2021, 12(1): 4908.
50 ZHANG K, DONNELLY C J, HAEUSLER A R, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport[J]. Nature, 2015, 525(7567): 56-61.
51 FREIBAUM B D, LU Y B, LOPEZ-GONZALEZ R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport[J]. Nature, 2015, 525(7567): 129-133.
52 YAMADA S B, GENDRON T F, NICCOLI T, et al. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats[J]. Nat Neurosci, 2019, 22(9): 1383-1388.
53 MAO Y H, DONG L M, LIU X M, et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2[J]. Nat Commun, 2019, 10(1): 5332.
54 SHEN L, PELLETIER J. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation[J]. Int J Mol Sci, 2020, 21(12): E4402.
55 CHENG W W, WANG S P, ZHANG Z, et al. CRISPR-Cas9 screens identify the RNA helicase DDX3X as a repressor of C9ORF72 (GGGGCC)n repeat-associated non-AUG translation[J]. Neuron, 2019, 104(5): 885-898.e8.
56 LIU H H, LU Y N, PAUL T, et al. A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation[J]. J Am Chem Soc, 2021, 143(19): 7368-7379.
57 TSENG Y J, SANDWITH S N, GREEN K M, et al. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation[J]. J Biol Chem, 2021, 297(2): 100914.
58 FRATTA P, MIZIELINSKA S, NICOLL A J, et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes[J]. Sci Rep, 2012, 2: 1016.
59 REDDY K, ZAMIRI B, STANLEY S Y R, et al. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures[J]. J Biol Chem, 2013, 288(14): 9860-9866.
60 CONLON E G, LU L, SHARMA A, et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains[J]. Elife, 2016, 5: e17820.
61 SU Z M, ZHANG Y J, GENDRON T F, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS[J]. Neuron, 2014, 83(5): 1043-1050.
62 SIMONE R, BALENDRA R, MOENS T G, et al. G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo[J]. EMBO Mol Med, 2018, 10(1): 22-31.
63 WANG Z F, URSU A, CHILDS-DISNEY J L, et al. The hairpin form of r(G4C2)exp in c9ALS/FTD is repeat-associated non-ATG translated and a target for bioactive small molecules[J]. Cell Chem Biol, 2019, 26(2): 179-190.e12.
Outlines

/