Review

Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma

  • Lanyi WEI ,
  • Xiaochuan XUE ,
  • Junjun CHEN ,
  • Quanjun YANG ,
  • Mengyue WANG ,
  • Yonglong HAN
Expand
  • 1.Department of Pharmacy, Shanghai Sixth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
    2.School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201109, China
HAN Yonglong, E-mail: yonglongh@126.com.

Received date: 2023-02-03

  Accepted date: 2023-03-30

  Online published: 2023-07-11

Supported by

National Natural Science Foundation of China(82003987);Public Welfare Project of Children′s Fund of Shanghai

Abstract

Osteosarcoma (OS) is a common primary malignant bone tumor in children and adolescents. The high recurrence and metastasis rate have become a common clinical problem to be solved, but there is no effective treatment. In recent years, studies have suggested that targeting the tumor microenvironment will likely become a new treatment direction for OS. Immune cell infiltration in the tumor microenvironment can promote tumor inflammation and angiogenesis. Tumor-associated macrophages (TAMs) are the most important immune cells in the tumor microenvironment, which play important roles in the development and metastasis of OS. The article reviews the effect of TAMs polarization on tumor cells and describes the effect of TAMs on the occurrence and development of OS from five aspects, including TAMs affecting the growth, invasion and metastasis, mediating chemotherapy resistance, stem cell-like phenotype, and immunosuppression of OS. The review summarizes the research progress of targeting TAMs in the treatment of OS in the past years, including influencing the recruitment of TAMs, promoting the polarization of M2 type to M1 type, targeting CD47 to promote the phagocytosis of TAMs, and targeting the immune checkpoint of TAMs, aiming to provide new directions and ideas for targeted therapy of OS.

Cite this article

Lanyi WEI , Xiaochuan XUE , Junjun CHEN , Quanjun YANG , Mengyue WANG , Yonglong HAN . Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023 , 43(5) : 624 -630 . DOI: 10.3969/j.issn.1674-8115.2023.05.014

References

1 KELLEHER F C, O′SULLIVAN H. Monocytes, macrophages, and osteoclasts in osteosarcoma[J]. J Adolesc Young Adult Oncol, 2017, 6(3): 396-405.
2 HUANG Q, LIANG X, REN T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol (Dordr), 2021, 44(3): 525-539.
3 SPALATO M, ITALIANO A. The safety of current pharmacotherapeutic strategies for osteosarcoma[J]. Expert Opin Drug Saf, 2021, 20(4): 427-438.
4 CHONG Z X, YEAP S K, HO W Y. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma[J]. Pharmacol Res, 2021, 172: 105818.
5 RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472.
6 ZHU T, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550.
7 XUE R, ZHANG Q, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity[J]. Nature, 2022, 612(7938): 141-147.
8 折胜利, 宋兴华, 周杨, 等. 骨肉瘤细胞外泌体调控JAK2/STAT3信号通路影响成纤维细胞向肿瘤相关成纤维细胞转化 [J]. 西部医学, 2021, 33(8): 1096-1100, 1105.
8 ZHE S L, SONG X H, ZHOU Y, et al. Effects of osteosarcoma cell exosomes on the transformation of fibroblasts into tumor-associated fibroblasts by regulating JAK2/STAT3 signaling pathway [J]. Western Medicine, 2021, 33(8): 1096-1100, 1105.
9 刘汉涛, 赵良虎, 秦宏敏. 骨髓间充质干细胞外泌体miR-25-3p调控骨肉瘤细胞增殖迁移及侵袭能力的功能与机制研究 [J]. 河北医学, 2022, 28(4): 529-534.
9 LIU H T, ZHAO L H, QIN H M. Study on the function and mechanism of bone marrow mesenchymal stem cell exosomal miR-25-3p regulating the proliferation, migration and invasion of osteosarcoma cells [J]. Hebei Medicine, 2022, 28(4): 529-534.
10 WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.
11 NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61.
12 MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.
13 ANDERSON P M, MEYERS P, KLEINERMAN E, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments[J]. Pediatr Blood Cancer, 2014, 61(2): 238-244.
14 HEYMANN M F, LéZOT F, HEYMANN D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J]. Cell Immunol, 2019, 343: 103711.
15 XIE D, WANG Z, LI J, et al. Targeted delivery of chemotherapeutic agents for osteosarcoma treatment[J]. Front Oncol, 2022, 12: 843345.
16 刘莹莹, 文金生, 邢景军, 等. 原发性恶性骨肿瘤免疫疗法研究现状及展望 [J]. 生命的化学, 2022, 42(2): 283-290.
16 LIU Y Y, WEN J S, XING J J, et al. Research status and prospect of immunotherapy for primary malignant bone tumors [J]. Chemistry of Life, 2022, 42(2): 283-290.
17 NIU J, YAN T, GUO W, et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy[J]. Front Oncol, 2020, 10: 1628.
18 QIU S Q, WAAIJER S J H, ZWAGER M C, et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player?[J]. Cancer Treat Rev, 2018, 70: 178-189.
19 LIU Y, FENG W, DAI Y, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[J]. Front Oncol, 2021, 11: 709210.
20 REN S, ZHANG X, HU Y, et al. Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype[J]. Ann Transl Med, 2020, 8(17): 1057.
21 LI J, ZHAO C, LI Y, et al. Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype[J]. Cancer Lett, 2022, 528: 1-15.
22 ZHANG H, LU J, LIU J, et al. Advances in the discovery of exosome inhibitors in cancer[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1322-1330.
23 HE F, DING G, JIANG W, et al. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells[J]. Cell Death Discov, 2021, 7(1): 307.
24 CUI J J, WANG Y, XUE H W. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis[J]. Bioengineered, 2022, 13(4): 8370-8381.
25 YANG D, LIU K, FAN L, et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-like polarization of tumor-associated macrophages of CPEB4[J]. Cancer Lett, 2020, 473: 33-49.
26 ZHANG H, YU Y, WANG J, et al. Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis[J]. Cancer Cell Int, 2021, 21(1): 192.
27 ZHONG L, LIAO D, LI J, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes[J]. Signal Transduct Target Ther, 2021, 6(1): 59.
28 HUO Y, LI Q, WANG X, et al. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2[J]. Oncotarget, 2017, 8(29): 46993-47006.
29 WANG W, SHEN H, CAO G, et al. Long non-coding RNA XIST predicts poor prognosis and promotes malignant phenotypes in osteosarcoma[J]. Oncol Lett, 2019, 17(1): 256-262.
30 WANG X, ZOU J, CHEN H, et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p[J]. IUBMB Life, 2019, 71(10): 1482-1491.
31 ZHANG B, ZHANG Y, LI R, et al. The efficacy and safety comparison of first-line chemotherapeutic agents (high-dose methotrexate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: a network meta-analysis[J]. J Orthop Surg Res, 2020, 15(1): 51.
32 HAN Y, GUO W, REN T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440/441: 116-125.
33 SU Y, ZHOU Y, SUN Y J, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1[J]. J Mol Med (Berl), 2019, 97(1): 49-61.
34 CHENG Z, WANG L, WU C, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through tim-3[J]. Arch Med Res, 2021, 52(2): 200-210.
35 QUERO L, TIADEN A N, HANSER E, et al. miR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation [J]. Front Immunol, 2019, 10: 3087.
36 CHEN Y, TANG G, QIAN H, et al. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization[J]. Aging (Albany NY), 2021, 13(10): 14258-14276.
37 CAO H, QUAN S, ZHANG L, et al. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma[J]. Oncol Lett, 2021, 21(5): 391.
38 SONG Y J, XU Y, ZHU X, et al. Immune landscape of the tumor microenvironment identifies prognostic gene signature CD4/CD68/CSF1R in osteosarcoma[J]. Front Oncol, 2020, 10: 1198.
39 LIANG X, GUO W, REN T, et al. Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta[J]. Cancer Lett, 2020, 480: 4-14.
40 LUO Z W, LIU P P, WANG Z X, et al. Macrophages in osteosarcoma immune microenvironment: implications for immunotherapy[J]. Front Oncol, 2020, 10: 586580.
41 ZHENG P, CHEN L, YUAN X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 53.
42 DONG X, SUN R, WANG J, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer[J]. Biochem Pharmacol, 2020, 182: 114289.
43 NAJAFI M, FARHOOD B, MORTEZAEE K. Cancer stem cells (CSCs) in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6): 8381-8395.
44 YANG L, DONG Y, LI Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145(4): 1099-1110.
45 SHAO X J, XIANG S F, CHEN Y Q, et al. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells[J]. Acta Pharmacol Sin, 2019, 40(10): 1343-1350.
46 吴婧婧, 孙妩弋, 魏伟. 肿瘤相关巨噬细胞在肝癌中的作用及靶向治疗研究进展 [J]. 安徽医科大学学报, 2017, 52(12): 1901-1905.
46 WU J J, SUN W Y, WEI W. Research progress on the role of tumor-associated macrophages in liver cancer and targeted therapy [J]. Journal of Anhui Medical University, 2017, 52(12): 1901-1905.
47 宋呈祥. CTRP9对小鼠巨噬细胞胞葬作用的影响及机制研究 [D]. 济南:山东大学, 2021.
47 SONG C X. The effect of CTRP9 on the efferocytosis of mouse macrophages and its mechanism [D]. Jinan: Shandong University, 2021.
48 MYERS K V, AMEND S R, PIENTA K J. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 94.
49 DORAN A C, YURDAGUL A, TABAS I. Efferocytosis in health and disease[J]. Nat Rev Immunol, 2020, 20(4): 254-267.
50 高松, 徐培钧, 郝继辉. 巨噬细胞在肿瘤发展及治疗中的研究进展 [J]. 中国细胞生物学学报, 2022, 44(4): 572-582.
50 GAO S, XU P J, HAO J H. Research progress of macrophages in tumor development and treatment [J]. Chinese Journal of Cell Biology, 2022, 44(4): 572-582.
51 ZHAO S J, JIANG Y Q, XU N W, et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex[J]. Oncogene, 2018, 37(8): 1049-1061.
52 RIBEIRO N, SOUSA S R, BREKKEN R A, et al. Role of SPARC in bone remodeling and cancer-related bone metastasis [J]. J Cell Biochem, 2014, 115(1): 17-26.
53 SéGALINY A I, MOHAMADI A, DIZIER B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1): 73-85.
54 CHEN D, XIE J, FISKESUND R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype[J]. Nat Commun, 2018, 9(1): 873.
55 XIAO Q, ZHANG X, WU Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma [J]. Tumour Biol, 2014, 35(8): 7611-7616.
56 PUNZO F, BELLINI G, TORTORA C, et al. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells [J]. Oncotarget, 2020, 11(7): 687-698.
57 尹芳芳, 许磊晶, 贺美娟, 等. 甲氨蝶呤诱导巨噬细胞M1极化促进骨肉瘤细胞凋亡的实验研究 [J]. 现代生物医学进展, 2020, 20(11): 2006-2011.
57 YIN F F, XU L J, HE M J, et al. Methotrexate induces M1 polarization of macrophages and promotes apoptosis of osteosarcoma cells [J]. Advances in Modern Biomedicine, 2020, 20(11): 2006-2011.
58 GOWD V, AHMAD A, TARIQUE M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine[J]. Semin Cancer Biol, 2022, 86(pt 2): 624-644.
59 ZHANG Y, YUAN T, LI Z, et al. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma treatment[J]. ACS Biomater Sci Eng, 2021, 7(4): 1515-1525.
60 MOHANTY S, YERNENI K, THERUVATH J L, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 MAb immunotherapy in osteosarcoma[J]. Cell Death Dis, 2019, 10(2): 36.
61 XU J F, PAN X H, ZHANG S J, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models[J]. Oncotarget, 2015, 6(27): 23662-23670.
62 MOHANTY S, AGHIGHI M, YERNENI K, et al. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don′t eat me’ signals off and ‘eat me’ signals on[J]. Mol Oncol, 2019, 13(10): 2049-2061.
63 王成吕, 聂玉洁, 潘润桑, 等. 三种新兴的免疫检查点分子在肿瘤免疫治疗中的研究进展 [J]. 现代肿瘤医学, 2022, 30(7): 1308-1312.
63 WANG C L, NIE Y J, PAN R S, et al. Research progress of three emerging immune checkpoint molecules in tumor immunotherapy [J]. Modern Oncology Medicine, 2022, 30(7): 1308-1312.
64 曾峥, 罗丹玲, 钟明利, 等. 免疫检查点抑制剂抗肿瘤作用的影响因素研究进展 [J]. 中南药学, 2022, 20(8): 1867-1874.
64 ZENG Z, LUO D L, ZHONG M L, et al. Research progress on influencing factors of anti-tumor effect of immune checkpoint inhibitors [J]. Zhongnan Pharmacy, 2022, 20(8): 1867-1874.
65 ZHENG B, REN T, HUANG Y, et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse[J]. J Hematol Oncol, 2018, 11(1): 16.
66 LIGON J A, CHOI W, COJOCARU G, et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes[J]. J Immunother Cancer, 2021, 9(5): e001772
67 TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454.
Outlines

/