Review

Progress in diagnosis and treatment of strabismus based on artificial intelligence technology

  • Yonglin GUO ,
  • Moxin CHEN ,
  • Zheyuan LIU ,
  • Yifei LI ,
  • Ziqi WANG ,
  • Qin SHU ,
  • Lin LI
Expand
  • 1.Department of Ophthalmology, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2.Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
    3.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
LI Lin, E-mail: jannetlee1300@163.com.

Received date: 2023-10-18

  Accepted date: 2023-01-26

  Online published: 2024-03-28

Supported by

Shanghai Science and Technology Innovation Action Plan Biomedical Technology Support Special Project(23S31900500);Target Commission of China Hospital Development Institute, Shanghai Jiao Tong University(CHDI-2022-DX-02);The Innovative Research Team of High-level Local Universities in Shanghai(SSMU-ZDCX20180401);Undergraduate Training Program on Innovation, Shanghai Jiao Tong University School of Medicine(1824026)

Abstract

Strabismus, misalignment of the eyes arising from central nervous system dysregulation and extraocular muscles imbalance, commonly manifests in childhood, leading to amblyopia, binocular vision dysfunction, torticollis and other developmental and psychological disorders. This exerts a negative impact on individuals, families and society. Timely diagnosis and intervention are crucial to prevent permanent damage to vision and stereopsis. Presently, strabismus diagnosis is reliant on the ophthalmologists′ evaluations which results in a lack of efficiency and coverage. However, routine school screening proves inadequate in assessing strabismus degree with low accuracy. Therefore, how to improve the efficiency of strabismus screening is an issue of great importance. This paper delves into the present landscape of strabismus diagnosis and treatment, considering both local and global research advancements. It focuses on the evolution of artificial intelligence technology, illuminating the utilization of artificial intelligence models and algorithms in strabismus. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way for future investigations into artificial intelligence-assisted strabismus diagnosis and treatment.

Cite this article

Yonglin GUO , Moxin CHEN , Zheyuan LIU , Yifei LI , Ziqi WANG , Qin SHU , Lin LI . Progress in diagnosis and treatment of strabismus based on artificial intelligence technology[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024 , 44(3) : 393 -398 . DOI: 10.3969/j.issn.1674-8115.2024.03.013

References

1 潘亚玲, 王晗琦, 陆勇. 人工智能在医学影像CAD中的应用[J]. 国际医学放射学杂志, 2019, 42(1): 3-7.
1 PAN Y L, WANG H Q, LU Y. The application of computer aided diagnosis with artificial intelligence in medical imaging[J]. International Journal of Medical Radiology, 2019, 42 (1): 3-7.
2 LAUGHTON S C, HAGEN M M, YANG W, et al. Gender differences in horizontal strabismus: systematic review and meta-analysis shows no difference in prevalence, but gender bias towards females in the clinic[J]. J Glob Health, 2023, 13: 04085.
3 HASHEMI H, PAKZAD R, HEYDARIAN S, et al. Global and regional prevalence of strabismus: a comprehensive systematic review and meta-analysis[J]. Strabismus, 2019, 27(2): 54-65.
4 WANG Y, ZHAO A D, ZHANG X H, et al. Prevalence of strabismus among preschool children in Eastern China and comparison at a 5-year interval: a population-based cross-sectional study[J]. BMJ Open, 2021, 11(10): e055112.
5 REPKA M X, LUM F, BURUGAPALLI B. Strabismus, strabismus surgery, and reoperation rate in the United States: analysis from the IRIS registry[J]. Ophthalmology, 2018, 125(10): 1646-1653.
6 ZHANG X, LI F, RAO J M, et al. Spectrum of ophthalmic diseases in children hospitalized in a tertiary ophthalmology hospital in China from 2010 to 2019[J]. BMC Ophthalmol, 2022, 22(1): 314.
7 MOSTAFAIE A, GHOJAZADEH M, HOSSEINIFARD H, et al. A systematic review of Amblyopia prevalence among the children of the world[J]. Rom J Ophthalmol, 2020, 64(4): 342-355.
8 赵旭峰, 于伟泓. 人工智能技术在眼底图像分析中的应用进展[J]. 中国医学前沿杂志(电子版), 2023, 15(6): 21-26.
8 ZHAO X F, YU W H. Advanced in the application of artificial intelligence in fundus image analysis[J]. Chinese Journal of the Frontiers of Medical Science(Electronic Version), 2023, 15(6): 21-26.
9 KAUL V, ENSLIN S, GROSS S A. History of artificial intelligence in medicine[J]. Gastrointest Endosc, 2020, 92(4): 807-812.
10 HARDAS M, MATHUR S, BHASKAR A, et al. Retinal fundus image classification for diabetic retinopathy using SVM predictions[J]. Phys Eng Sci Med, 2022, 45(3): 781-791.
11 KIM S J, CHO K J, OH S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.
12 YANG Y H, LI R Y, LIN D R, et al. Automatic identification of myopia based on ocular appearance images using deep learning[J]. Ann Transl Med, 2020, 8(11): 705.
13 WALLACE D K, CHRISTIANSEN S P, SPRUNGER D T, et al. Esotropia and exotropia preferred practice pattern?[J]. Ophthalmology, 2018, 125(1): P143-P183.
14 史斌, 谭大鹏, 王雪林, 等. MRI检查在复杂性斜视患儿中的应用价值分析[J]. 江西医药, 2020, 55(6): 767-769.
14 SHI B, TAN D P, WANG X L, et al. Analysis of the application value of MRI examination in children with complex strabismus[J]. Jangxi Medical Journal, 2020, 55(6): 767-769.
15 HAO R, LIU Y, ZHANG W, et al. Morphological study of extraocular muscles in dissociated vertical deviation by magnetic resonance imaging[J]. Zhonghua Yan Ke Za Zhi, 2023, 59(3): 202-206.
16 HULL S, TAILOR V, BALDUZZI S, et al. Tests for detecting strabismus in children aged 1 to 6 years in the community[J]. Cochrane Database Syst Rev, 2017, 11(11): CD011221.
17 袁久民, 袁久华, 王正艳. 角膜映光检查法理论与临床[J]. 国际眼科杂志, 2005, 5(3): 522-527.
17 YUAN J M, YUAN J H, WANG Z Y. Theory and clinical practice on corneal light reflection[J]. International Eye Science, 2005, 5(3): 522-527.
18 TENGTRISORN S, TUNGSATTAYATHITTHAN A, PHATTHALUNG S N, et al. The reliability of the angle of deviation measurement from the Photo-Hirschberg tests and Krimsky tests[J]. PLoS One, 2021, 16(12): e0258744.
19 牛玉玲, 叶茹珊, 金玲, 等. Hirschberg Test在儿童斜视角测量中的准确性和可靠性研究[J]. 中外医学研究, 2018, 16(24): 149-150.
19 NIU Y L, YE R S, JIN L, et al. A study of the accuracy and reliability of the Hirschberg Test in the measurement of oblique angle of vision in children[J]. Chinese And Foreign Medical Research, 2018, 16(24):149-150.
20 王翠英, 陈丽萍, 邢华禹. 同视机在双眼视功能检查的应用[J]. 中国眼镜科技杂志, 2019(11): 107-109.
20 WANG C Y, CHEN L P, XING H Y, et al. Application of synoptoscope in binocular visual function examination[J]. China Glasses Science-Technology Magazine, 2019(11): 107-109.
21 周榆松, 庄仪婧, 李劲嵘. 斜视度的客观测量方法[J]. 国际眼科纵览, 2022, 46(1): 76-79.
21 ZHOU Y S, ZHUANG Y J, LI J R. Methods for measuring strabismus objectively[J]. International Review of Ophthalmology, 2022, 46(1): 76-9.
22 DYSLI M, FIERZ F C, RAPPOPORT D, et al. Divergence bias in Hess compared to Harms screen strabismus testing[J]. Strabismus, 2021, 29(1): 1-9.
23 THORISDOTTIR R L, SUNDGREN J, SHEIKH R, et al. Comparison of a new digital KM screen test with conventional Hess and Lees screen tests in the mapping of ocular deviations[J]. J AAPOS, 2018, 22(4): 277-280.e6.
24 VALENTE T L A, DE ALMEIDA J D S, SILVA A C, et al. Automatic diagnosis of strabismus in digital videos through cover test[J]. Comput Meth Programs Biomed, 2017, 140: 295-305.
25 姚倩. 基于深度学习的斜视图片自动检测的运用研究[D]. 汕头: 汕头大学, 2019.
25 YAO Q. Automatically Detecting on Strabismus Image Based on Deep Learning[D]. Shantou: Shantou University, 2019.
26 DE FIGUEIREDO L A, DIAS J V P, POLATI M, et al. Strabismus and artificial intelligence app: optimizing diagnostic and accuracy[J]. Transl Vis Sci Technol, 2021, 10(7): 22.
27 HUANG X L, LEE S J, KIM C Z, et al. An automatic screening method for strabismus detection based on image processing[J]. PLoS One, 2021, 16(8): e0255643.
28 CHEN Z H, FU H, LO W L, et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.
29 FAN Z, LU J W, ZHENG C, et al. Automated strabismus detection based on deep neural networks for telemedicine applications[EB/OL]. (2018-12-03)[2023-10-03]. http://arxiv.org/abs/1809.02940.
30 ALMEIDA J D, SILVA A C, TEIXEIRA J A M, et al. Surgical planning for horizontal strabismus using Support Vector Regression[J]. Comput Biol Med, 2015, 63: 178-186.
31 LEITE F H F, ALMEIDA J D S, CRUZ L B D, et al. Surgical planning of horizontal strabismus using multiple output regression tree[J]. Comput Biol Med, 2021, 134: 104493.
32 MAO K L, YANG Y H, GUO C, et al. An artificial intelligence platform for the diagnosis and surgical planning of strabismus using corneal light-reflection photos[J]. Ann Transl Med, 2021, 9(5): 374.
33 LOU L X, HUANG X R, SUN Y M, et al. Automated photographic analysis of inferior oblique overaction based on deep learning[J]. Quant Imaging Med Surg, 2023, 13(1): 329-338.
34 WANG S Y, JI Y K, BAI W, et al. Advances in artificial intelligence models and algorithms in the field of optometry[J]. Front Cell Dev Biol, 2023, 11: 1170068.
Outlines

/