%A LIN Jiayu, QIN Jiejie, JIANG Lingxi %T Progress in metabolism of the immune cells in tumor microenvironment %0 Journal Article %D 2022 %J Journal of Shanghai Jiao Tong University (Medical Science) %R 10.3969/j.issn.1674-8115.2022.08.018 %P 1122-1130 %V 42 %N 8 %U {https://xuebao.shsmu.edu.cn/CN/abstract/article_13474.shtml} %8 2022-08-28 %X

Metabolic reprogramming refers to cells' mechanism to change their metabolic patterns in order to meet the increased energy demand caused by growth and proliferation. By way of metabolic reprogramming such as the Warburg effect, tumor cells gain rich energy to support their own survival, growth, and metastasis. The tumor microenvironment (TME) is the internal environment in which tumor cells survive, containing not only tumor cells, but also stromal cells, immune cells, and other components that are closely related to tumor cells. Meanwhile, tumor cells regulate intercellular function and signaling via secreting cytokines, metabolites, and other molecules and shape a commonly hypoxic, acidic, and nutrient-deprived TME which contributes the most to immune resistance. However, rapidly proliferating tumor cells compete for relatively scarce nutrients with immune cells, consequently, producing an immunosuppressive metabolism microenvironment. Under the influence of immunosuppressive TME, immune cells generate tolerance phenotype-related metabolic adaptations through metabolic reprogramming to satisfy their own needs and further perform anti-tumor or immunosuppressive roles. The response of immune cells to tumor cells mainly depends on respective unique metabolic pathways, which are related to the type and function of immune cells. Moreover, the functional properties of immune cells are directly associated with the immunotherapy effects. Regulating metabolic pathways of immune cells provides a great direction for cancer therapy. In this paper, the main metabolic pathways of immune cells in TME is described, the relationship between their metabolic characteristics and immune functions is summarized, and the mechanism of metabolic pathways underlying the functions of immune cells is further discussed, providing new insights for unveiling tumor immunosuppressive microenvironment and improving the efficacy of tumor immunotherapy.