基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究
周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳

Feasibility study on quantifying retinal vascular features for predicting preeclampsia based on artificial intelligence models
ZHOU Tianfan, SHAO Feixue, WAN Sheng, ZHOU Chenchen, ZHOU Sijin, HUA Xiaolin
表2 3组孕妇的眼底特征及视网膜血管特征参数比较
Tab 2 Comparison of fundus characteristics and retinal vascular characteristic parameters among the three groups of pregnant women
Characteristic

Unaffected group

(n=685)

HDP group (n=104)Pc value
GH group (n=36)Pa valuePE group (n=68)Pb value
Decreased elasticity of retinal arteries/n(%)196 (28.61)12 (33.33)0.57223 (33.82)0.4010.532
Leopard pattern change/n(%)456 (66.57)23 (63.89)0.72148 (70.59)0.5890.746
Arteriosclerosis/n(%)4 (0.58)1 (2.78)0.2271 (1.47)0.3780.181
Vitreous warts/n(%)42 (6.13)2 (5.56)1.0004 (5.88)1.0001.000
Retinal sporadic bleeding/n(%)7 (1.02)1 (2.78)0.3381 (1.47)0.5330.337
CRAE94.00 (87.00, 99.00)89.00 (86.00, 95.00)0.15087.00 (80.00, 94.00)0.0000.000
CRVE122.00 (116.00, 129.00)120.00 (116.00, 122.50)0.101120.00 (111.00, 126.50)0.0170.019
AVR0.75 (0.71, 0.81)0.74 (0.70, 0.79)0.4320.72 (0.67, 0.77)0.0020.006
Retinal artery tortuosity0.05 (0.04, 0.07)0.04 (0.04, 0.07)0.5670.04 (0.03, 0.06)0.0040.015
Retinal vein tortuosity0.09 (0.07, 0.11)0.07 (0.06, 0.11)0.1860.08 (0.06, 0.10)0.1200.141
Retinal artery fractal dimension1.48 (1.41, 1.54)1.47 (1.41, 1.51)0.2451.45 (1.38, 1.51)0.0030.007
Retinal vein fractal dimension1.49 (1.42, 1.56)1.51 (1.45, 1.55)0.5691.48 (1.44, 1.55)0.9900.848
VCDR0.28 (0.22, 0.34)0.29 (0.20, 0.33)0.6880.27 (0.22, 0.34)0.5220.764
HCDR0.39 (0.31, 0.46)0.40 (0.31, 0.45)0.9670.39 (0.31, 0.45)0.7400.941