基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究
周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳

Feasibility study on quantifying retinal vascular features for predicting preeclampsia based on artificial intelligence models
ZHOU Tianfan, SHAO Feixue, WAN Sheng, ZHOU Chenchen, ZHOU Sijin, HUA Xiaolin
表3 PE发生的影响因素的单因素和多因素Logistic回归分析
Tab 3 Univariate and multivariate Logistic regression analysis of the influencing factors of PE occurrence
CharacteristicUnivariate Logistic analysisMultivariate Logistic analysis
OR95% CIP valueaOR95% CIP value
Second-trimester MAP1.1101.076‒1.1480.0001.1061.068‒1.1470.000
Second-trimester EFW0.7020.571‒0.8690.0010.7000.560‒0.8700.000
CRAE0.9360.904‒0.9650.0000.9400.910‒0.9700.000
CRVE0.9720.952‒0.9930.0090.9700.950‒0.9900.010
AVR0.0100.000‒0.2880.0080.0200.000‒0.5000.020
Retinal artery tortuosity0.0000.000‒0.0120.0120.0000.000‒0.0500.020
Retinal artery fractal dimension0.0460.006‒0.3930.0040.0700.010‒0.7200.020