基于人工智能模型量化视网膜血管特征参数预测子痫前期的可行性研究
|
周天凡, 邵飞雪, 万盛, 周晨晨, 周思锦, 花晓琳
|
Feasibility study on quantifying retinal vascular features for predicting preeclampsia based on artificial intelligence models
|
ZHOU Tianfan, SHAO Feixue, WAN Sheng, ZHOU Chenchen, ZHOU Sijin, HUA Xiaolin
|
|
表3 PE发生的影响因素的单因素和多因素Logistic回归分析
|
Tab 3 Univariate and multivariate Logistic regression analysis of the influencing factors of PE occurrence
|
|
Characteristic | Univariate Logistic analysis | Multivariate Logistic analysis |
---|
OR | 95% CI | P value | aOR | 95% CI | P value |
---|
Second-trimester MAP | 1.110 | 1.076‒1.148 | 0.000 | 1.106 | 1.068‒1.147 | 0.000 | Second-trimester EFW | 0.702 | 0.571‒0.869 | 0.001 | 0.700 | 0.560‒0.870 | 0.000 | CRAE | 0.936 | 0.904‒0.965 | 0.000 | 0.940 | 0.910‒0.970 | 0.000 | CRVE | 0.972 | 0.952‒0.993 | 0.009 | 0.970 | 0.950‒0.990 | 0.010 | AVR | 0.010 | 0.000‒0.288 | 0.008 | 0.020 | 0.000‒0.500 | 0.020 | Retinal artery tortuosity | 0.000 | 0.000‒0.012 | 0.012 | 0.000 | 0.000‒0.050 | 0.020 | Retinal artery fractal dimension | 0.046 | 0.006‒0.393 | 0.004 | 0.070 | 0.010‒0.720 | 0.020 |
|
|
|