计算机辅助下自体荧光图像定量结果与口腔白斑病上皮异常增生等级的相关性
|
李晨曦, 王子瑞, 金恬昊, 周曾同, 唐国瑶, 施琳俊
|
Correlation between computer-assisted quantitative autofluorescence imaging results and the pathological grading of oral epithelial dysplasia in oral leukoplakia
|
LI Chenxi, WANG Zirui, JIN Tianhao, ZHOU Zengtong, TANG Guoyao, SHI Linjun
|
|
表1 二分类病理结果的准确度、精确度和F1分值
|
Tab 1 Accuracy, precision, and F1 scores of binary classification of pathological results
|
|
Maximum depth of decision tree | Index | The proportion of the test set in all samples |
---|
0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|
2 | Accuracy | 0.667 | 0.741 | 0.792 | 0.656 | 0.648 | 0.632 | 0.650 | 0.671 | 0.665 | Precision | 0.675 | 0.749 | 0.801 | 0.659 | 0.655 | 0.555 | 0.604 | 0.622 | 0.605 | F1 score | 0.669 | 0.744 | 0.795 | 0.547 | 0.534 | 0.522 | 0.556 | 0.586 | 0.578 | 3 | Accuracy | 0.639 | 0.685 | 0.750 | 0.589 | 0.648 | 0.680 | 0.629 | 0.603 | 0.609 | Precision | 0.643 | 0.700 | 0.764 | 0.485 | 0.619 | 0.665 | 0.560 | 0.536 | 0.536 | F1 score | 0.640 | 0.690 | 0.755 | 0.508 | 0.596 | 0.663 | 0.551 | 0.554 | 0.554 | 4 | Accuracy | 0.667 | 0.704 | 0.750 | 0.711 | 0.620 | 0.664 | 0.630 | 0.634 | 0.631 | Precision | 0.667 | 0.713 | 0.764 | 0.707 | 0.579 | 0.649 | 0.572 | 0.552 | 0.544 | F1 score | 0.667 | 0.707 | 0.755 | 0.709 | 0.576 | 0.650 | 0.566 | 0.562 | 0.557 |
|
|
|