机器学习预测乳腺癌新辅助治疗后炎症代谢状态改变的模型评价
吴其蓁, 刘启明, 柴烨子, 陶政宇, 王依楠, 郭欣宁, 姜萌, 卜军

Evaluation of machine learning prediction of altered inflammatory metabolic state after neoadjuvant therapy for breast cancer
WU Qizhen, LIU Qiming, CHAI Yezi, TAO Zhengyu, WANG Yinan, GUO Xinning, JIANG Meng, PU Jun
表3 乳腺癌新辅助治疗前后患者的5种模型在测试集中的多特征变量预测性能比较
Tab 3 Comparison of the predictive performance of the five models for multi-feature variables in the test set for patients with breast cancer before and after neoadjuvant therapy
Multi-featureModelAUCAccuracyPrecision rateRecallF1 value
WBC+HB+HDLRF0.9280.9140.9380.9090.923
GB0.9000.7760.8850.6970.780
SVM0.9410.8970.9090.9090.909
DT0.7990.7930.8620.7580.806
KNN0.9070.8970.8860.9390.912
IL-2R+IL-8RF0.7720.7760.7630.8790.817
GB0.7920.7930.8180.8180.818
SVM0.7640.7070.6900.8790.773
DT0.7140.7070.7350.7580.746
KNN0.7620.7240.7300.8180.771
All featuresRF0.9540.8970.9090.9090.909
GB0.9530.9140.9670.8790.921
SVM0.9410.8790.8820.9090.896
DT0.8870.8620.8570.9090.882
KNN0.9390.8620.9030.8480.875