JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (9): 1154-1161.doi: 10.3969/j.issn.1674-8115.2021.09.004
• Neonatal surgery topics • Previous Articles
Rui CHEN1,2(), Yun ZHAO2,3, Xiao-xia ZHAO1,2, Dong MA1,2, Yi-jiang HAN1,2, Deng-ming LAI1,2, Wei-zhong GU2,3, Jin-fa TOU1,2(
)
Received:
2021-03-19
Online:
2021-08-24
Published:
2021-08-24
Contact:
Jin-fa TOU
E-mail:chenruiwz@zju.edu.cn;toujinfa@zju.edu.cn
Supported by:
CLC Number:
Rui CHEN, Yun ZHAO, Xiao-xia ZHAO, Dong MA, Yi-jiang HAN, Deng-ming LAI, Wei-zhong GU, Jin-fa TOU. Expression characteristics of silent information regulator transcript 1 in intestinal tissues of neonatal necrotizing enterocolitis[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1154-1161.
Item | Control group (n=40) | Obeservation group (n=40) | χ2/t value | P value |
---|---|---|---|---|
Gender/n | 0.202 | 0.653 | ||
Male | 23 | 21 | ||
Female | 17 | 19 | ||
Gestational age/n | 0.139 | 0.709 | ||
Premature infant(<37 week) | 37 | 35 | ||
Term infant(≥37 week) | 3 | 5 | ||
Birth weight/g | ||||
Premature infant | 1 614.1±477.1 | 1 689.0±493.6 | 0.109 | 0.913 |
Term infant | 2 985.0±551.2 | 3 181.0±583.7 | 0.224 | 0.830 |
Delivery mode/n | 0.058 | 0.809 | ||
Vaginal delivery | 12 | 13 | ||
Cesarean section | 28 | 27 |
Tab 1 Comparison of the general data between the two groups
Item | Control group (n=40) | Obeservation group (n=40) | χ2/t value | P value |
---|---|---|---|---|
Gender/n | 0.202 | 0.653 | ||
Male | 23 | 21 | ||
Female | 17 | 19 | ||
Gestational age/n | 0.139 | 0.709 | ||
Premature infant(<37 week) | 37 | 35 | ||
Term infant(≥37 week) | 3 | 5 | ||
Birth weight/g | ||||
Premature infant | 1 614.1±477.1 | 1 689.0±493.6 | 0.109 | 0.913 |
Term infant | 2 985.0±551.2 | 3 181.0±583.7 | 0.224 | 0.830 |
Delivery mode/n | 0.058 | 0.809 | ||
Vaginal delivery | 12 | 13 | ||
Cesarean section | 28 | 27 |
Inflammatory factor | Control group (n=40) | Obeservation group (n=40) | U value | P value |
---|---|---|---|---|
hs-CRP/(mg·L-1) | 1.00 (0.50, 2.00) | 58.91 (32.74, 107.40) | 89.50 | 0.000 |
PCT/(ng·mL-1) | 0.25 (0.22, 0.46) | 10.25 (6.51, 17.93) | 0.00 | 0.000 |
IL-2/(pg·mL-1) | 4.70 (2.98, 6.80) | 4.55 (3.43, 6.53) | 796.00 | 0.971 |
IL-4/(pg·mL-1) | 2.15 (1.59, 2.66) | 2.29 (1.60, 2.75) | 730.00 | 0.504 |
IL-6/(pg·mL-1) | 11.85 (9.75, 25.03) | 719.30 (156.30, 1 555.00) | 20.00 | 0.000 |
IL-10/(pg·mL-1) | 3.20 (2.20, 4.95) | 23.60 (10.15, 51.08) | 0.00 | 0.000 |
TNF-α/(pg·mL-1) | 3.09 (2.44, 3.98) | 3.27 (2.44, 3.94) | 786.00 | 0.895 |
IFN-γ/(pg·mL-1) | 3.50 (2.45, 6.93) | 5.70 (2.80, 10.27) | 614.00 | 0.074 |
Tab 2 Comparison of expression levels of inflammatory factors in serum of the two groups
Inflammatory factor | Control group (n=40) | Obeservation group (n=40) | U value | P value |
---|---|---|---|---|
hs-CRP/(mg·L-1) | 1.00 (0.50, 2.00) | 58.91 (32.74, 107.40) | 89.50 | 0.000 |
PCT/(ng·mL-1) | 0.25 (0.22, 0.46) | 10.25 (6.51, 17.93) | 0.00 | 0.000 |
IL-2/(pg·mL-1) | 4.70 (2.98, 6.80) | 4.55 (3.43, 6.53) | 796.00 | 0.971 |
IL-4/(pg·mL-1) | 2.15 (1.59, 2.66) | 2.29 (1.60, 2.75) | 730.00 | 0.504 |
IL-6/(pg·mL-1) | 11.85 (9.75, 25.03) | 719.30 (156.30, 1 555.00) | 20.00 | 0.000 |
IL-10/(pg·mL-1) | 3.20 (2.20, 4.95) | 23.60 (10.15, 51.08) | 0.00 | 0.000 |
TNF-α/(pg·mL-1) | 3.09 (2.44, 3.98) | 3.27 (2.44, 3.94) | 786.00 | 0.895 |
IFN-γ/(pg·mL-1) | 3.50 (2.45, 6.93) | 5.70 (2.80, 10.27) | 614.00 | 0.074 |
Protein | Control group (n=40) | Observation group (n=40) | χ2 value | P value |
---|---|---|---|---|
SIRT1/n | 33.885 | 0.000 | ||
+ | 34 | 8 | ||
- | 6 | 32 | ||
NF-κB/n | 24.444 | 0.000 | ||
+ | 11 | 33 | ||
- | 29 | 7 | ||
Smad3/n | 0.238 | 0.626 | ||
+ | 27 | 29 | ||
- | 13 | 11 | ||
TGF-β1/n | 1.067 | 0.302 | ||
+ | 8 | 12 | ||
- | 32 | 28 |
Tab 3 Differential expression of SIRT1, NF-κB, TGF-β1 and Smad3 in the two groups
Protein | Control group (n=40) | Observation group (n=40) | χ2 value | P value |
---|---|---|---|---|
SIRT1/n | 33.885 | 0.000 | ||
+ | 34 | 8 | ||
- | 6 | 32 | ||
NF-κB/n | 24.444 | 0.000 | ||
+ | 11 | 33 | ||
- | 29 | 7 | ||
Smad3/n | 0.238 | 0.626 | ||
+ | 27 | 29 | ||
- | 13 | 11 | ||
TGF-β1/n | 1.067 | 0.302 | ||
+ | 8 | 12 | ||
- | 32 | 28 |
1 | Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600. |
2 | Cho SX, Berger PJ, Nold-Petry CA, et al. The immunological landscape in necrotising enterocolitis[J]. Expert Rev Mol Med, 2016, 18: e12. |
3 | Cho SX, Rudloff I, Lao JC, et al. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities[J]. Nat Commun, 2020, 11(1): 5794. |
4 | Agakidou E, Agakidis C, Gika H, et al. Emerging biomarkers for prediction and early diagnosis of necrotizing enterocolitis in the era of metabolomics and proteomics[J]. Front Pediatr, 2020, 8: 602255. |
5 | Chadha S, Wang LQ, Hancock WW, et al. Sirtuin-1 in immunotherapy: a Janus-headed target[J]. J Leukoc Biol, 2019, 106(2): 337-343. |
6 | 施诚仁, 金先庆, 李仲智. 小儿外科学[M]. 4版. 北京: 人民卫生出版社, 2009: 309-312. |
7 | 张岚, 白铂亮, 王莉, 等. SIRT1信号通路在新生儿坏死性小肠结肠炎肠组织中的表达研究[J]. 海南医学院学报, 2019, 25(8): 578-582. |
8 | 窦敏, 郑英霞, 韩丽, 等. PRMT4在胃癌发生和发展中的作用和机制研究[J]. 上海交通大学学报(医学版), 2020, 40(5): 609-618. |
9 | Denning NL, Prince JM. Neonatal intestinal dysbiosis in necrotizing enterocolitis[J]. Mol Med, 2018, 24: 4. |
10 | Hackam DJ, Sodhi CP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 229-238.e1. |
11 | Mihi B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science[J]. Clin Perinatol, 2019, 46(1): 145-157. |
12 | Lan KC, Chao SC, Wu HY, et al. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF‑κB and HMGB1 pathways through the upregulation of SIRT1[J]. Sci Rep, 2017, 7(1): 12026. |
13 | Li GQ, Xia ZB, Liu Y, et al. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway[J]. Biosci Rep, 2018, 38(3): BSR20180541. |
14 | Wang L, Wang MM, Dou HJ, et al. Sirtuin 1 inhibits lipopolysaccharide-induced inflammation in chronic myelogenous leukemia k562 cells through interacting with the Toll-like receptor 4-nuclear factor κB-reactive oxygen species signaling axis[J]. Cancer Cell Int, 2020, 20: 73. |
15 | Mishra M, Duraisamy AJ, Kowluru RA. Sirt1: a guardian of the development of diabetic retinopathy[J]. Diabetes, 2018, 67(4): 745-754. |
16 | 郑文香, 丛立春, 韩斌. 沉默信息调节因子1在具核梭杆菌诱导肠上皮细胞炎症和凋亡中的作用[J]. 中国病原生物学杂志, 2019, 14(6): 643-649, 655. |
17 | 尹海朦, 何鑫, 单颖, 等. 沉默信息调节因子1促进鼻咽癌增殖、迁移和脂质代谢机制的研究[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(10): 934-943. |
18 | Wellman AS, Metukuri MR, Kazgan N, et al. Intestinal epithelial Sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota[J]. Gastroenterology, 2017, 153(3): 772-786. |
19 | Markel TA, Martin CA, Chaaban H, et al. New directions in necrotizing enterocolitis with early-stage investigators[J]. Pediatr Res, 2020, 88(): 35-40. |
20 | Zhang WJ, Zhang YY, Guo XH, et al. Sirt1 protects endothelial cells against LPS-induced barrier dysfunction[J]. Oxid Med Cell Longev, 2017, 2017: 4082102. |
21 | Hodzic Z, Bolock AM, Good M. The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis[J]. Front Pediatr, 2017, 5: 40. |
22 | Burge K, Bergner E, Gunasekaran A, et al. The Role of glycosaminoglycans in protection from neonatal necrotizing enterocolitis: a narrative review[J]. Nutrients, 2020, 12(2): 546. |
23 | Hansen LW, Khader A, Yang WL, et al. Sirtuin 1 activator SRT1720 protects against organ injury induced by intestinal ischemia-reperfusion[J]. Shock, 2016, 45(4): 359-366. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1805
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 729
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||