Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (10): 1458-1465.doi: 10.3969/j.issn.1674-8115.2022.10.012
• Review • Previous Articles
Received:
2022-05-09
Accepted:
2022-09-19
Online:
2022-10-28
Published:
2022-12-02
Contact:
FAN Ying
E-mail:xinghaifan1997@163.com;fanyingsh@126.com
Supported by:
CLC Number:
XING Haifan, FAN Ying. Advances in single-cell RNA sequencing in glomerular diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1458-1465.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.10.012
Disease | Publi-cation Year | Author | Sample source | Sample number | Technology | Platform | Reference |
---|---|---|---|---|---|---|---|
DN | 2019 | FU, et al. | Glomerulus (Mouse) | 2 groups,n=3/group: eNOS-/- + Vehicle, eNOS-/- + STZ | scRNA-seq | Fluidigm C1 | [ |
2019 | WILSON, et al. | Nephrectomy | 3 diabetic nephropathy samples, 3 control samples | snRNA-seq | 10×Genomics | [ | |
2021 | ABEDINI, et al. | Urine | 17 urine samples from 5 subjects, 1 pooled sample from 10 healthy individuals | scRNA-seq | 10×Genomics | [ | |
2021 | WU,et al. | Kidney (Mouse) | 5 groups,n=2‒ 4/group: db/m+vehicle, db/db + vehicle, db/db + dapagliflflozin, db/db + irbesartan,db/db + dapagliflflozin+irbesartan | scRNA-seq | 10×Genomics | [ | |
2022 | WU,et al. | Kidney (Mouse) | 7 groups, two early time points/group, 70 mice in total: ReninAAV Unx db/db treated with Vehicle, Lisinopril, Rosiglitazone, JNJ-39933673, Lisinopril + JNJ-39933673, Lisinopril + rosiglitazone; LacZ AAV db/m | snRNA-seq | 10×Genomics | [ | |
RNA-seq | |||||||
LN | 2019 | ARAZI,et al. | Kidney biopsy | 24 lupus nephritis, 10 controls | scRNA-seq | CEL-Seq2 | [ |
Urine | 8 lupus nephritis | ||||||
PBMC | 10 lupus nephritis, 6 controls | scRNA-seq | 10×Genomics | ||||
RNA-seq | |||||||
2019 | DER, et al. | Kidney biopsy | 21 lupus nephritis, 3 controls | scRNA-seq | Fluidigm C1 | [ | |
Skin biopsy | 17 lupus nephritis, 3 controls | ||||||
PBMC | 8 lupus nephritis | ||||||
IgAN | 2020 | ZHENG, et al. | Kidney | 13 IgAN,6 nephropathy samples from controls | scRNA-seq | STRT-Seq | [ |
CD14+ PBMC | 5 IgAN, 5 controls | ||||||
2021 | TANG, et al. | Kidney biopsy | 4 IgAN, 1 control | scRNA-seq | 10×Genomics | [ | |
2021 | ZENG, et al. | PBMC | 10 IgAN, 6 controls | scRNA-seq | BD Rhapsody | [ | |
2022 | ZAMBRANO, et al. | Glomerulus (Mouse) | 5 gddY mice, 5 ddY mice | scRNA-seq | SMART-seq2 | [ | |
PMN | 2021 | XU,et al. | Kidney biopsy | 6 PMN, 2 controls | scRNA-seq | 10×Genomics | [ |
FSGS | 2021 | MENON, et al. | Kidney | 24 healthy single-cell samples | scRNA-seq | 10×Genomics | [ |
2021 | LATT, et al. | Urine | 23 urine cell samples from 12 subjects | scRNA-seq | 10×Genomics | [ |
Tab 1 Summary of glomerular disease studies applying single-cell/ single nucleus RNA sequencing technology
Disease | Publi-cation Year | Author | Sample source | Sample number | Technology | Platform | Reference |
---|---|---|---|---|---|---|---|
DN | 2019 | FU, et al. | Glomerulus (Mouse) | 2 groups,n=3/group: eNOS-/- + Vehicle, eNOS-/- + STZ | scRNA-seq | Fluidigm C1 | [ |
2019 | WILSON, et al. | Nephrectomy | 3 diabetic nephropathy samples, 3 control samples | snRNA-seq | 10×Genomics | [ | |
2021 | ABEDINI, et al. | Urine | 17 urine samples from 5 subjects, 1 pooled sample from 10 healthy individuals | scRNA-seq | 10×Genomics | [ | |
2021 | WU,et al. | Kidney (Mouse) | 5 groups,n=2‒ 4/group: db/m+vehicle, db/db + vehicle, db/db + dapagliflflozin, db/db + irbesartan,db/db + dapagliflflozin+irbesartan | scRNA-seq | 10×Genomics | [ | |
2022 | WU,et al. | Kidney (Mouse) | 7 groups, two early time points/group, 70 mice in total: ReninAAV Unx db/db treated with Vehicle, Lisinopril, Rosiglitazone, JNJ-39933673, Lisinopril + JNJ-39933673, Lisinopril + rosiglitazone; LacZ AAV db/m | snRNA-seq | 10×Genomics | [ | |
RNA-seq | |||||||
LN | 2019 | ARAZI,et al. | Kidney biopsy | 24 lupus nephritis, 10 controls | scRNA-seq | CEL-Seq2 | [ |
Urine | 8 lupus nephritis | ||||||
PBMC | 10 lupus nephritis, 6 controls | scRNA-seq | 10×Genomics | ||||
RNA-seq | |||||||
2019 | DER, et al. | Kidney biopsy | 21 lupus nephritis, 3 controls | scRNA-seq | Fluidigm C1 | [ | |
Skin biopsy | 17 lupus nephritis, 3 controls | ||||||
PBMC | 8 lupus nephritis | ||||||
IgAN | 2020 | ZHENG, et al. | Kidney | 13 IgAN,6 nephropathy samples from controls | scRNA-seq | STRT-Seq | [ |
CD14+ PBMC | 5 IgAN, 5 controls | ||||||
2021 | TANG, et al. | Kidney biopsy | 4 IgAN, 1 control | scRNA-seq | 10×Genomics | [ | |
2021 | ZENG, et al. | PBMC | 10 IgAN, 6 controls | scRNA-seq | BD Rhapsody | [ | |
2022 | ZAMBRANO, et al. | Glomerulus (Mouse) | 5 gddY mice, 5 ddY mice | scRNA-seq | SMART-seq2 | [ | |
PMN | 2021 | XU,et al. | Kidney biopsy | 6 PMN, 2 controls | scRNA-seq | 10×Genomics | [ |
FSGS | 2021 | MENON, et al. | Kidney | 24 healthy single-cell samples | scRNA-seq | 10×Genomics | [ |
2021 | LATT, et al. | Urine | 23 urine cell samples from 12 subjects | scRNA-seq | 10×Genomics | [ |
1 | BALZER M S, ROHACS T, SUSZTAK K. How many cell types are in the kidney and what do they do?[J]. Annu Rev Physiol, 2022, 84: 507-531. |
2 | 陈麒麟, 刘志红. 单细胞RNA测序在肾脏疾病研究中的应用[J]. 肾脏病与透析肾移植杂志, 2019, 28(4): 355-359. |
CHEN Q L, LIU Z H. Single-cell RNA-sequencing in kidney disease[J]. Chin J Nephrol Dial Transpl, 2019, 28(4): 355-359. | |
3 | 王梦洁, 董伟, 梁馨苓. 单细胞RNA测序在肾脏疾病研究中的应用与前景[J]. 临床肾脏病杂志, 2021, 21(8): 681-684. |
WANG M J, DONG W, LIANG X L. Applications and prospects of single-cell RNA sequencing for renal disease researches[J]. J Clin Nephrol, 2021, 21(8): 681-684. | |
4 | 王鑫瑶, 邓振领, 王悦. 单细胞RNA测序在肾脏领域的研究进展[J]. 临床肾脏病杂志, 2021, 21(2): 153-157. |
WANG X Y, DENG Z L, WANG Y. Research advances of single-cell RNA sequencing in kidney[J]. J Clin Nephrol, 2021, 21(2): 153-157. | |
5 | TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-382. |
6 | 操利超, 巴颖, 张核子. 单细胞测序方法研究进展[J]. 生物信息学, 2022, 20(2): 91-99. |
CAO L C, BA Y, ZHANG H Z. Recent progress in single cell sequencing[J]. Chinese Journal of Bioinformatics, 2022, 20(2): 91-99. | |
7 | ZHENG G X Y, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8: 14049. |
8 | BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59. |
9 | BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490. |
10 | REDMOND D, PORAN A, ELEMENTO O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq[J]. Genome Med, 2016, 8(1): 80. |
11 | STICKELS R R, MURRAY E, KUMAR P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nat Biotechnol, 2021, 39(3): 313-319. |
12 | VAN DEN BRINK S C, SAGE F, VÉRTESY Á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nat Methods, 2017, 14(10): 935-936. |
13 | WU H J, KIRITA Y, DONNELLY E L, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1): 23-32. |
14 | LU Y Q, YE Y T, YANG Q Q, et al. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes[J]. Kidney Int, 2017, 92(2): 504-513. |
15 | LU Y Q, YE Y T, BAO W D N, et al. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing[J]. Kidney Int, 2017, 92(5): 1119-1129. |
16 | CHEN L H, LEE J W, CHOU C L, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq[J]. Proc Natl Acad Sci USA, 2017, 114(46): e9989-e9998. |
17 | KARAISKOS N, RAHMATOLLAHI M, BOLTENGAGEN A, et al. A single-cell transcriptome atlas of the mouse Glomerulus[J]. J Am Soc Nephrol, 2018, 29(8): 2060-2068. |
18 | PARK J, SHRESTHA R, QIU C X, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease[J]. Science, 2018, 360(6390): 758-763. |
19 | STEWART B J, FERDINAND J R, YOUNG M D, et al. Spatiotemporal immune zonation of the human kidney[J]. Science, 2019, 365(6460): 1461-1466. |
20 | DER E, RANABOTHU S, SURYAWANSHI H, et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis[J]. JCI Insight, 2017, 2(9) : e93009. |
21 | ARAZI A, RAO D A, BERTHIER C C, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019, 20(7): 902-914. |
22 | DER E, SURYAWANSHI H, MOROZOV P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20(7): 915-927. |
23 | FAVA A, BUYON J, MOHAN C, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis[J]. JCI Insight, 2020, 5(12): e138345. |
24 | ZHANG T, LI H, VANARSA K, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages[J]. Front Immunol, 2020, 11: 671. |
25 | VANARSA K, SOOMRO S, ZHANG T, et al. Quantitative planar array screen of 1 000 proteins uncovers novel urinary protein biomarkers of lupus nephritis[J]. Ann Rheum Dis, 2020, 79(10): 1349-1361. |
26 | FAVA A, RAO D A, MOHAN C, et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis[J]. Arthritis Rheumatol, 2022, 74(5): 829-839. |
27 | DENG Y Y, ZHENG Y, LI D L, et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021, 70: 103477. |
28 | FU J, AKAT K M, SUN Z G, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease[J]. J Am Soc Nephrol, 2019, 30(4): 533-545. |
29 | SEMBACH F E, AGIDIUS H M, FINK L N, et al. Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease[J]. Dis Model Mech, 2021, 14(10): dmm049086. |
30 | WU C H, TAO Y J, LI N, et al. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys[J]. J Cell Commun Signal, 2022.doi: 10.1007/s12079-022-006-85-z. |
31 | WILSON P C, WU H J, KIRITA Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19619-19625. |
32 | WILSON P C, MUTO Y, WU H J, et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression[J]. Nat Commun, 2022, 13(1): 5253. |
33 | ABEDINI A, ZHU Y O, CHATTERJEE S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney[J]. J Am Soc Nephrol, 2021, 32(3): 614-27. |
34 | WU J S, SUN Z G, YANG S M, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice[J]. Mol Ther, 2022, 30(4): 1741-1753. |
35 | WU H J, GONZALEZ VILLALOBOS R, YAO X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies[J]. Cell Metab, 2022, 34(7): 1064-1078.e6. |
36 | WYATT R J, JULIAN B A. IgA nephropathy[J]. N Engl J Med, 2013, 368(25): 2402-2414. |
37 | ZHENG Y, LU P, DENG Y Y, et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy[J]. Cell Rep, 2020, 33(12): 108525. |
38 | TANG R, MENG T, LIN W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy[J]. Front Immunol, 2021, 12: 645988. |
39 | ZAMBRANO S, HE LQ, KANO T, et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing[J]. Kidney Int, 2022, 101(4): 752-765. |
40 | ZENG H H, WANG L, LI J J, et al. Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy[J]. Cell Biosci, 2021, 11(1): 203. |
41 | MENON R, OTTO E A, HOOVER P, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker[J]. JCI Insight, 2020, 5(6): e133267. |
42 | LATT K Z, HEYMANN J, JESSEE J H, et al. Urine single-cell RNA sequencing in focal segmental glomerulosclerosis reveals inflammatory signatures[J]. Kidney Int Rep, 2021, 7(2): 289-304. |
43 | XU J, SHEN C J, LIN W, et al. Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-PLA2R positive idiopathic membranous nephropathy patients[J]. Front Immunol, 2021, 12: 683330. |
44 | SEALFON R, MARIANI L, AVILA-CASADO C, et al. Molecular characterization of membranous nephropathy[J]. J Am Soc Nephrol, 2022, 33(6): 1208-1221. |
45 | KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930. |
46 | SMALLWOOD S A, LEE H J, ANGERMUELLER C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity[J]. Nat Methods, 2014, 11(8): 817-820. |
47 | NAGANO T, LUBLING Y, STEVENS T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure[J]. Nature, 2013, 502(7469): 59-64. |
48 | STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells[J]. Nat Methods, 2017, 14(9): 865-868. |
49 | PARK J, LIU C L, KIM J, et al. Understanding the kidney one cell at a time[J]. Kidney Int, 2019, 96(4): 862-870. |
50 | YANG C, XIA S, ZHANG W, et al. Modulation of Atg genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing[J]. Autophagy, 2022: 2022Jun2310. |
51 | DENG Y Y, DA J J, YU J L, et al. Single-cell RNA sequencing data analysis suggests the cell-cell interaction patterns of the pituitary-kidney axis[J]. Sci Rep, 2022, 12(1): 11147. |
52 | CHEN J Y, HUANG X R, YANG F Y, et al. Single-cell RNA sequencing identified novel Nr4a1+ Ear2+ anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN)[J]. Adv Sci (Weinh), 2022, 9(18): e2200668. |
53 | GUJARATI N A, LEONARDO A R, VASQUEZ J M, et al. Loss of functional SCO2 attenuates oxidative stress in diabetic kidney disease[J]. Diabetes, 2021. doi: 10.2337/db21-0316. |
[1] | Yin LIU, Tao YANG, Yu-sai XIE, Yu-zhu WANG. Screening of key genes and pathways involved in lupus nephritis based on GEO database [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 749-755. |
[2] | Guan-wen HUANG, Ji-wen BAO, Zi-yang LI, Min-fang ZHANG, Wen-yan ZHOU, Qin WANG, Zhao-hui NI, Ling WANG. Predictive value of soluble interleukin-2 receptor and tumor necrosis factor-α in disease activity of lupus nephritis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 55-61. |
[3] | DING Lei, GAO Cai-xia, LIU Zhao-yuan, CHEN Lei. Evaluation of a custom transcriptome sequencing library construction reagent with a small amount of cell input [J]. , 2020, 40(4): 472-. |
[4] | ZHANG Wei-ran1, 2, LIN Xue-feng3, LI Xin2, ZHANG Hao2, WANG Meng2, SUN Wei2, HAN Xing-peng2, SUN Da-qiang1, 4. Transcriptional identification of potential biomarkers of lung adenocarcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1598-1606. |
[5] | YANG Xiao-qian1,XIE Jing-yuan1, 2, MOU Shan2, 3. Advances in application of rituximab in treatment of primary glomerulonephritis [J]. , 2018, 38(3): 333-. |
[6] | ZHAO Chu-xian, GAO Feng, RONG Shu, SHANG Ming-hua. Lupus nephritis accompanied with Castleman’s disease: a case report and literature review [J]. , 2017, 37(12): 1710-. |
[7] | LI Shao-bo, FU Guo-hui. RNA-Seq based analysis on cSNP and gene expression level [J]. , 2014, 34(2): 129-. |
[8] | ZHAO Bao-jing, HUANG Xin-fang, SHEN Nan, et al. Expression of single-stranded DNA in peripheral blood mononuclear cells in patients with systemic lupus erythematosus [J]. , 2010, 30(6): 703-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||