1 |
JI W J, LIANG A M, QU C Y, et al. Epidemiologic survey on the prevalence and distribution of infants′ common gastrointestinal symptoms in 7 cities in China: a population-based study[J]. Zhonghua Liu Xing Bing Xue Za Zhi, 2018, 39(9): 1179-1183.
|
2 |
ZAIKA L L, KISSINGER J C. Fermentation enhancement by spices: identification of active component[J]. J Food Sci, 1984, 49(1): 5-9.
|
3 |
PEDEBSON C S, Albury M N. Sauerkraut[J]. Adv Food Res, 1961, 10: 233-291.
|
4 |
EFSA Panel on Biological Hazards (BIOHAZ), KOUTSOUMANIS K, ALLENDE A, et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: suitability of taxonomic units notified to EFSA until March 2020[J]. Efsa J, 2020, 18(7): e06174.
|
5 |
LADHA G, JEEVARATNAM K. Characterization of purified antimicrobial peptide produced by Pediococcus pentosaceus LJR1, and its application in preservation of white leg shrimp[J]. World J Microbiol Biotechnol, 2020, 36(5): 72.
|
6 |
裴慧洁. 戊糖片球菌产细菌素的提取、分离纯化及理化特性研究[D]. 扬州:扬州大学, 2019.
|
|
PEI H J. Extraction, purification and physicochemical properties of bacteriocin produced by Pediococcus pentosaceus[D].Yangzhou: Yangzhou University, 2019.
|
7 |
QUEIROZ L L, HOFFMANN C, LACORTE G A, et al. Genomic and functional characterization of bacteriocinogenic lactic acid bacteria isolated from Boza, a traditional cereal-based beverage[J]. Sci Rep, 2022, 12(1): 1460.
|
8 |
LU Y, HAN S, ZHANG S, et al. The role of probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal conditions[J]. Curr Res Food Sci, 2022, 5: 581-589.
|
9 |
谷懿寰, 江正强, 刘军, 等. 奶豆腐中戊糖片球菌的分离鉴定及其产胞外多糖的益生活性[J]. 食品与发酵工业, 2022, 48(9): 84-90.
|
|
GU Y H, JIANG Z Q,LIU J, et al. Separation and identification of Pediococcus pentosaceus S28 from dried milk cake and the prebiotic activity of its exopolysaccharides[J].Food Ferment Industr, 2022, 48(9): 84-90.
|
10 |
QI Y, HUANG L, ZENG Y, et al. Pediococcus pentosaceus: screening and application as probiotics in food processing[J]. Front Microbiol, 2021, 12: 762467.
|
11 |
ASTÓ E, HUEDO P, ALTADILL T, et al. Probiotic properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 show potential to counteract functional gastrointestinal disorders in an observational pilot trial in infants[J]. Front Microbiol, 2021, 12: 741391.
|
12 |
LV L X, LI Y D, HU X J, et al. Whole-genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains[J]. Gut Pathog, 2014, 6: 36.
|
13 |
ZHANG H, XU J, CHEN Q, et al. Physiological, morphological and antioxidant responses of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages to oxidative stress[J]. Foods, 2021, 10(6): 1203.
|
14 |
LEE D K, PARK J E, KIM M J, et al. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients[J]. Clin Res Hepatol Gastroenterol, 2015, 39(2): 237-244.
|
15 |
MARTÍN V, MALDONADO A, FERNÁNDEZ L, et al. Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk[J]. Breastfeed Med, 2010, 5(4): 153-158.
|
16 |
ALPDUNDAR BULUT E, BAYYURT KOCABAS B, YAZAR V, et al. Human gut commensal membrane vesicles modulate inflammation by generating M2-like macrophages and myeloid-derived suppressor cells[J]. J Immunol, 2020, 205(10): 2707-2718.
|
17 |
SANTAS J, FUENTES M C, TORMO R, et al. Pediococcus pentosaceus CECT 8330 and Bifidobacterium longum CECT 7894 show a trend towards lowering infantile excessive crying syndrome in a pilot clinical trial[J]. Int J Pharma Bio Sci, 2015, 6(2): 458-466.
|
18 |
HUANG J, LI S, WANG Q, et al. Pediococcus pentosaceus B49 from human colostrum ameliorates constipation in mice[J]. Food Funct, 2020, 11(6): 5607-5620.
|
19 |
WANG R, DENG Y, ZHANG Y, et al. Modulation of intestinal barrier, inflammatory response, and gut microbiota by Pediococcus pentosaceus zy-B alleviates Vibrio parahaemolyticus infection in C57BL/6J mice[J]. J Agric Food Chem, 2022, 70(6): 1865-1877.
|
20 |
陈霞, 刘芳丽, 王莹, 等. 婴儿肠绞痛研究进展[J]. 中国儿童保健杂志, 2021, 29(9): 973-977.
|
|
CHEN X, LIU F L, WANG Y. Research progress of infant colic[J]. Chin J Child Health Care, 2021, 29(9): 973-977.
|
21 |
TINTORE M, COLOME G, SANTAS J, et al. Gut microbiota dysbiosis and role of probiotics in infant colic[J]. Arch Clin Microbiol, 2017, 8(4). DOI: 10.4172/1989-8436.100056.
|
22 |
HOFMAN D, KUDLA U, MIQDADY M, et al. Faecal microbiota in infants and young children with functional gastrointestinal disorders: a systematic review[J]. Nutrients, 2022, 14(5): 974.
|
23 |
ZEEVENHOOVEN J, BROWNE P D, L'HOIR M P, et al. Infant colic: mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8): 479-496.
|
24 |
PÄRTTY A, KALLIOMÄKI M, SALMINEN S, et al. Infantile colic is associated with low-grade systemic inflammation[J]. J Pediatr Gastroenterol Nutr, 2017, 64(5): 691-695.
|
25 |
JOHNSON J M, ADAMS E D. The gastrointestinal microbiome in infant colic: a scoping review[J]. MCN Am J Matern Child Nurs, 2022, 47(4): 195-206.
|
26 |
DONG F, XIAO F, LI X, et al. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice[J]. J Transl Med, 2022, 20(1): 33.
|
27 |
JIANG S, XIA J, LV L, et al. Effects of Pediococcus pentosaceus LI05 on immunity and metabolism in germ-free rats[J]. Food Funct, 2021, 12(11): 5077-5086.
|
28 |
CHEN K, LIU C, LI H, et al. Infantile colic treated with Bifidobacterium longum CECT7894 and Pediococcus pentosaceus CECT8330: a randomized, double-blind, placebo-controlled trial[J]. Front Pediatr, 2021, 9: 635176.
|
29 |
TINTORE M, CUNE J. Probiotic treatment with ab-kolicare® causes changes in the microbiota which correlate with a reduction in crying time[J]. Int J Pharma Bio Sci, 2017, 8(1): 281-288.
|
30 |
NAVARRO-TAPIA E, STICCO M, ASTó E, et al. Patient characteristics influencing infant colic amelioration under a probiotic treatment[J]. Ann Nutr Metabol, 2019, 74(suppl 1): 15.
|