Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (6): 663-675.doi: 10.3969/j.issn.1674-8115.2024.06.001
• Oral and Cranio-maxillofacial Science • Next Articles
Received:
2024-02-29
Accepted:
2024-04-01
Online:
2024-06-28
Published:
2024-06-28
Contact:
JIANG Lingyong
E-mail:jianglingyong@sjtu.edu.cn
Supported by:
CLC Number:
JIANG Lingyong. Status and advances in the mechanism research on dento-maxillofacial skeletal abnormalities[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 663-675.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.06.001
Fig 2 Schematic diagram of the roles of WNT signaling, SHH signaling, RA signaling, BMP signaling, and Notch signaling during dento-maxillofacial development using LacZ tool mice
Key cell lineage (marker-Cre) | Gene | Pathway | Characteristic of abnormalities | Related phenotype, syndrome or disease | Reference |
---|---|---|---|---|---|
NCC (Wnt1-Cre) | Med23 | WNT signaling | ③④ | Pierre Robin syndrome, micrognathia, cleft palate | [ |
NCC (Wnt1-Cre) | Fgf18 | WNT signaling | ①③④ | Micrognathia, cleft palate, hypoplastic craniofacial bones | [ |
NCC (Wnt1-Cre) | Six1 | WNT signaling, BMP signaling | ③④ | Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia | [ |
NCC (Wnt1-Cre) | Bmp2 | BMP signaling | ③④ | Pierre Robin syndrome | [ |
NCC (Wnt1-Cre) | Bmp4 | BMP signaling | ②③④ | Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage | [ |
NCC (Wnt1-Cre) | Foxf2 | SHH signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Setdb1 | BMP signaling, WNT signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Ift20 | WNT signaling | ①③④ | Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate | [ |
NCC (Wnt1-Cre, Sox9-Cre) | G9a | SHH signaling | Wnt1: ①③; Sox9: ①② | Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia Sox9: death shortly after birth, cranial skeletal dysplasia, smaller tooth germ, impaired tooth inner enamel epithelium | [ |
NCC (Wnt1-Cre) | Tak1 | FGF signaling | ③④ | Pierre Robin syndrome, micrognathia, abnormal tongue, cleft palate | [ |
NCC (Wnt1-Cre) | Tgfbr2 | FGF signaling | ‒ | Abnormal tongue | [ |
NCC (Wnt1-Cre) | Nell1 | WNT signaling | ① | Craniosynostosis | [ |
NCC (Wnt1-Cre) | Dlx3 | WNT signaling | ①③ | Tricho-dento-osseous syndrome, defected frontal bone and mandible | [ |
NCC (Wnt1-Cre) | Yap/Taz | WNT signaling | ①③ | Neural tube malformation, craniofacial vascular malformation, mandibular abnormalities | [ |
NCC (Wnt1-Cre) | Tfap2 | WNT signaling, RA signaling | ①③④ | Branchio-oto-renal syndrome, midface cleft, defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Twist1 | FGF signaling | ① | Defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Brca1/2 | P53 signaling | ①④ | Craniostenosis, cleft palate, defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Smo | SHH signaling | ① | Defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Ldb1 | WNT signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Osx | FGF signaling | ①③ | Micrognathia, defected craniofacial bone | [ |
First branchial arch mesenchymal cell (Pax2-Cre) | Bmp4 | BMP signaling | ‒ | Bilateral hyperplastic tissues | [ |
First branchial arch mesenchymal cell (Hand2-Cre) | Twist1 | FGF signaling | ③④ | Micrognathia, cleft palate | [ |
Mesenchymal cell (Twist2-Cre) | Fgf18 | WNT signaling | ①③ | Micrognathia, defected craniofacial bone | [ |
Mesenchymal cell (Twist1-Cre) | Twist1 | FGF signaling | ② | Defected dentin and enamel, tooth abnormalities | [ |
Osteoblast (Prx1-Cre) | Ift20 | WNT signaling | ① | Craniostenosis | [ |
Osteoblast (Osx-Cre, Col1-Cre) | Fgfr3 | WNT signaling | ① | Osx: CATSHL syndrome, frontonasal dysplasia Col1: CATSHL syndrome | [ |
Osteoblast (Osx-Cre) | Rar | RA signaling | ①③ | Vitamin A deficiency, micrognathia, frontonasal dysplasia | [ |
Osteoblast (Prx1-Cre, Osx-Cre) | Ror2 | BMP signaling, STAT signaling | ①②③ | Robinow syndrome, brachyrhinia | [ |
Osteoblast (Prx1-Cre, Osx-Cre) | Stat3 | STAT signaling | ①③ | AD-HIES syndrome, defected craniofacial bone | [ |
Osteoblast/chondroblast (Dermo1-Cre, Col2a1-Cre, Prx1-Cre, Osx-Cre) | Cbfb | WNT signaling | ①②③ | Dermo1 & Col2a1: Cleidocranial dysostosis, hypomineralized craniofacial bones, clavicle dysplasia Prx1: Cleidocranial dysostosis, hypomineralized parietal bones, clavicle missing Osx: Cleidocranial dysostosis, hypomineralized parietal bones, tooth deformities | [ |
Osteoblast/chondroblast (Prx1-Cre, Col2-Cre) | Recql4 | P53 signaling | ①② | Rothmund-Thomson syndrome, Baller-Gerold syndrome | [ |
Chondroblast (Col2-Cre) | Yap/Taz | WNT signaling | ①④ | Defected craniofacial bone, cleft palate | [ |
Osteoblast (Ocn-Cre) | Wls | WNT signaling | ①③ | Defected craniofacial bone, molar deformity | [ |
Osteoblast (Ocn-Cre) | Ift20 | WNT signaling | ① | Osteopenia-like phenotypes in skulls | [ |
Osteoblast (Osx-Cre) | Notch2 | Notch signaling | ①②③ | Hajdu-Cheney syndrome | [ |
Osteoblast (Osx-Cre) | Fgfr2 | FGF signaling | ①②③ | Crouzon syndrome | [ |
Osteoblast (Prrx1-Cre) | Gα | RANKL signaling | ① | Fibrous dysplasia | [ |
Osteoblast (Osx-Cre) | Efnb1 | Unclear | ①③ | Larger cranial height, larger interorbital and nasal widths, smaller maxillary width | [ |
Osteoblast (Osx-Cre) | Atg5 | MMP signaling | ① | Defected craniofacial bone | [ |
Osteoblast (Osx-Cre) | Fip200 | MMP signaling | ① | Defected craniofacial bone | [ |
Epithelial cell (Krt14-Cre、Eiia-Cre) | Wnt10a | WNT signaling | ② | Taurodontism | [ |
Epithelial cell (Krt14-Cre) | Tgfbr2 | WNT signaling | ④ | Soft palate cleft | [ |
Epithelial cell (Krt14-Cre) | Dlx3 | WNT signaling | ② | Hypomineralized enamel | [ |
Epithelial cell (Krt14-Cre) | Fgfr2 | FGF signaling | ② | Retarded tooth formation, cleft palate | [ |
Epithelial cell (Shh-Cre) | Wls | WNT signaling | ② | Defective ameloblast and odontoblast differentiation | [ |
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre) | β-catenin | WNT signaling | ④ | Cleft palate | [ |
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre) | Runx2 | RA signaling | ④ | Cleft palate | [ |
Pharyngeal endoderm cell (Foxg1-Cre) | Tbx1 | Unclear | ①③ | Velo-cardio-facial syndrome | [ |
Tab 1 Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited mice
Key cell lineage (marker-Cre) | Gene | Pathway | Characteristic of abnormalities | Related phenotype, syndrome or disease | Reference |
---|---|---|---|---|---|
NCC (Wnt1-Cre) | Med23 | WNT signaling | ③④ | Pierre Robin syndrome, micrognathia, cleft palate | [ |
NCC (Wnt1-Cre) | Fgf18 | WNT signaling | ①③④ | Micrognathia, cleft palate, hypoplastic craniofacial bones | [ |
NCC (Wnt1-Cre) | Six1 | WNT signaling, BMP signaling | ③④ | Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia | [ |
NCC (Wnt1-Cre) | Bmp2 | BMP signaling | ③④ | Pierre Robin syndrome | [ |
NCC (Wnt1-Cre) | Bmp4 | BMP signaling | ②③④ | Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage | [ |
NCC (Wnt1-Cre) | Foxf2 | SHH signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Setdb1 | BMP signaling, WNT signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Ift20 | WNT signaling | ①③④ | Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate | [ |
NCC (Wnt1-Cre, Sox9-Cre) | G9a | SHH signaling | Wnt1: ①③; Sox9: ①② | Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia Sox9: death shortly after birth, cranial skeletal dysplasia, smaller tooth germ, impaired tooth inner enamel epithelium | [ |
NCC (Wnt1-Cre) | Tak1 | FGF signaling | ③④ | Pierre Robin syndrome, micrognathia, abnormal tongue, cleft palate | [ |
NCC (Wnt1-Cre) | Tgfbr2 | FGF signaling | ‒ | Abnormal tongue | [ |
NCC (Wnt1-Cre) | Nell1 | WNT signaling | ① | Craniosynostosis | [ |
NCC (Wnt1-Cre) | Dlx3 | WNT signaling | ①③ | Tricho-dento-osseous syndrome, defected frontal bone and mandible | [ |
NCC (Wnt1-Cre) | Yap/Taz | WNT signaling | ①③ | Neural tube malformation, craniofacial vascular malformation, mandibular abnormalities | [ |
NCC (Wnt1-Cre) | Tfap2 | WNT signaling, RA signaling | ①③④ | Branchio-oto-renal syndrome, midface cleft, defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Twist1 | FGF signaling | ① | Defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Brca1/2 | P53 signaling | ①④ | Craniostenosis, cleft palate, defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Smo | SHH signaling | ① | Defected craniofacial bone | [ |
NCC (Wnt1-Cre) | Ldb1 | WNT signaling | ④ | Cleft palate | [ |
NCC (Wnt1-Cre) | Osx | FGF signaling | ①③ | Micrognathia, defected craniofacial bone | [ |
First branchial arch mesenchymal cell (Pax2-Cre) | Bmp4 | BMP signaling | ‒ | Bilateral hyperplastic tissues | [ |
First branchial arch mesenchymal cell (Hand2-Cre) | Twist1 | FGF signaling | ③④ | Micrognathia, cleft palate | [ |
Mesenchymal cell (Twist2-Cre) | Fgf18 | WNT signaling | ①③ | Micrognathia, defected craniofacial bone | [ |
Mesenchymal cell (Twist1-Cre) | Twist1 | FGF signaling | ② | Defected dentin and enamel, tooth abnormalities | [ |
Osteoblast (Prx1-Cre) | Ift20 | WNT signaling | ① | Craniostenosis | [ |
Osteoblast (Osx-Cre, Col1-Cre) | Fgfr3 | WNT signaling | ① | Osx: CATSHL syndrome, frontonasal dysplasia Col1: CATSHL syndrome | [ |
Osteoblast (Osx-Cre) | Rar | RA signaling | ①③ | Vitamin A deficiency, micrognathia, frontonasal dysplasia | [ |
Osteoblast (Prx1-Cre, Osx-Cre) | Ror2 | BMP signaling, STAT signaling | ①②③ | Robinow syndrome, brachyrhinia | [ |
Osteoblast (Prx1-Cre, Osx-Cre) | Stat3 | STAT signaling | ①③ | AD-HIES syndrome, defected craniofacial bone | [ |
Osteoblast/chondroblast (Dermo1-Cre, Col2a1-Cre, Prx1-Cre, Osx-Cre) | Cbfb | WNT signaling | ①②③ | Dermo1 & Col2a1: Cleidocranial dysostosis, hypomineralized craniofacial bones, clavicle dysplasia Prx1: Cleidocranial dysostosis, hypomineralized parietal bones, clavicle missing Osx: Cleidocranial dysostosis, hypomineralized parietal bones, tooth deformities | [ |
Osteoblast/chondroblast (Prx1-Cre, Col2-Cre) | Recql4 | P53 signaling | ①② | Rothmund-Thomson syndrome, Baller-Gerold syndrome | [ |
Chondroblast (Col2-Cre) | Yap/Taz | WNT signaling | ①④ | Defected craniofacial bone, cleft palate | [ |
Osteoblast (Ocn-Cre) | Wls | WNT signaling | ①③ | Defected craniofacial bone, molar deformity | [ |
Osteoblast (Ocn-Cre) | Ift20 | WNT signaling | ① | Osteopenia-like phenotypes in skulls | [ |
Osteoblast (Osx-Cre) | Notch2 | Notch signaling | ①②③ | Hajdu-Cheney syndrome | [ |
Osteoblast (Osx-Cre) | Fgfr2 | FGF signaling | ①②③ | Crouzon syndrome | [ |
Osteoblast (Prrx1-Cre) | Gα | RANKL signaling | ① | Fibrous dysplasia | [ |
Osteoblast (Osx-Cre) | Efnb1 | Unclear | ①③ | Larger cranial height, larger interorbital and nasal widths, smaller maxillary width | [ |
Osteoblast (Osx-Cre) | Atg5 | MMP signaling | ① | Defected craniofacial bone | [ |
Osteoblast (Osx-Cre) | Fip200 | MMP signaling | ① | Defected craniofacial bone | [ |
Epithelial cell (Krt14-Cre、Eiia-Cre) | Wnt10a | WNT signaling | ② | Taurodontism | [ |
Epithelial cell (Krt14-Cre) | Tgfbr2 | WNT signaling | ④ | Soft palate cleft | [ |
Epithelial cell (Krt14-Cre) | Dlx3 | WNT signaling | ② | Hypomineralized enamel | [ |
Epithelial cell (Krt14-Cre) | Fgfr2 | FGF signaling | ② | Retarded tooth formation, cleft palate | [ |
Epithelial cell (Shh-Cre) | Wls | WNT signaling | ② | Defective ameloblast and odontoblast differentiation | [ |
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre) | β-catenin | WNT signaling | ④ | Cleft palate | [ |
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre) | Runx2 | RA signaling | ④ | Cleft palate | [ |
Pharyngeal endoderm cell (Foxg1-Cre) | Tbx1 | Unclear | ①③ | Velo-cardio-facial syndrome | [ |
1 | HEGGIE A A. Craniofacial disorders[J]. Aust Dent J, 2018, 63(Suppl 1): S58-S68. |
2 | PRUZINSKY T. Social and psychological effects of major craniofacial deformity[J]. Cleft Palate Craniofacial J, 1992, 29(6): 578-584. |
3 | ZHOU S R, DAI Q G, HUANG X R, et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis[J]. Nat Commun, 2021, 12(1): 6891. |
4 | GONG X, SUN S, YANG Y, et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement[J]. J Bone Miner Res, 2023, 38(1): 214-227. |
5 | JIN A, XU H, GAO X, et al. ScRNA-seq reveals a distinct osteogenic progenitor of alveolar bone[J]. J Dent Res, 2023, 102(6): 645-655. |
6 | MANZANARES M, NIETO M A. A celebration of the new head and an evaluation of the new mouth[J]. Neuron, 2003, 37(6): 895-898. |
7 | HELMS J A, SCHNEIDER R A. Cranial skeletal biology[J]. Nature, 2003, 423(6937): 326-331. |
8 | WILKIE A O, MORRISS-KAY G M. Genetics of craniofacial development and malformation[J]. Nat Rev Genet, 2001, 2(6): 458-468. |
9 | CUGURRA A, MAMULADZE T, RUSTENHOVEN J, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma[J]. Science, 2021, 373(6553): eabf7844. |
10 | BOK S, YALLOWITZ A R, SUN J, et al. A multi-stem cell basis for craniosynostosis and calvarial mineralization[J]. Nature, 2023, 621(7980): 804-812. |
11 | YU M F, MA L, YUAN Y, et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis[J]. Cell, 2021, 184(1): 243-256.e18. |
12 | YEWENG S J, HUANG S F, REN L J. Orthodontics in China[J]. J Orthod, 2002, 29(1): 62-65. |
13 | PATIL S, RAO R S, MAJUMDAR B. Single gene disorders with craniofacial and oral manifestations[J]. J Contemp Dent Pract, 2014, 15(5): 659-671. |
14 | PATEL N C, GALLAGHER J L, TORGERSON T R, et al. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome[J]. J Clin Immunol, 2015, 35(5): 479-485. |
15 | MANI P, JARRELL A, MYERS J, et al. Visualizing canonical Wnt signaling during mouse craniofacial development[J]. Dev Dyn, 2010, 239(1): 354-363. |
16 | LIU B, HUNTER D J, ROOKER S, et al. Wnt signaling promotes Müller cell proliferation and survival after injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 444-453. |
17 | LIM W H, LIU B, CHENG D, et al. Wnt signaling regulates homeostasis of the periodontal ligament[J]. J Periodontal Res, 2014, 49(6): 751-759. |
18 | DAO D Y, YANG X, FLICK L M, et al. Axin2 regulates chondrocyte maturation and axial skeletal development[J]. J Orthop Res, 2010, 28(1): 89-95. |
19 | LOHI M, TUCKER A S, SHARPE P T. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development[J]. Dev Dyn, 2010, 239(1): 160-167. |
20 | MENG Q H, MONGAN M, WANG J J, et al. Repression of MAP3K1 expression and JNK activity by canonical Wnt signaling[J]. Dev Biol, 2018, 440(2): 129-136. |
21 | NAKASHIMA M, TANESE N, ITO M, et al. A novel gene, GliH1, with homology to the Gli zinc finger domain not required for mouse development[J]. Mech Dev, 2002, 119(1): 21-34. |
22 | GUSTAFSSON M K, PAN H, PINNEY D F, et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification[J]. Genes Dev, 2002, 16(1): 114-126. |
23 | PATAPOUTIAN A, MINER J H, LYONS G E, et al. Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice[J]. Development, 1993, 118(1): 61-69. |
24 | LOHNES D, MARK M, MENDELSOHN C, et al. Function of the retinoic acid receptors (RARs) during development: (Ⅰ) Craniofacial and skeletal abnormalities in RAR double mutants[J]. Development, 1994, 120(10): 2723-2748. |
25 | YU X, KAWAKAMI H, TAHARA N, et al. Expression of Noggin and Gremlin1 and its implications in fine-tuning BMP activities in mouse cartilage tissues[J]. J Orthop Res, 2017, 35(8): 1671-1682. |
26 | NACKE S, SCHÄFER R, HABRÉ DE ANGELIS M, et al. Mouse mutant “rib-vertebrae” (rv): a defect in somite polarity[J]. Dev Dyn, 2000, 219(2): 192-200. |
27 | LI Q W, XU R S, LEI K X, et al. Insights into skeletal stem cells[J]. Bone Res, 2022, 10(1): 61. |
28 | BAEK W Y, KIM Y J, CROMBRUGGHE B D, et al. Osterix is required for cranial neural crest-derived craniofacial bone formation[J]. Biochem Biophys Res Commun, 2013, 432(1): 188-192. |
29 | XIAO M, ZHANG W J, LIU W, et al. Osteocytes regulate neutrophil development through IL-19: a potent cytokine for neutropenia treatment[J]. Blood, 2021, 137(25): 3533-3547. |
30 | QIN X, JIANG Q, MATSUO Y, et al. Cbfb regulates bone development by stabilizing Runx family proteins[J]. J Bone Miner Res, 2015, 30(4): 706-714. |
31 | YANG Y L, CHUNG M R, ZHOU S R, et al. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription[J]. J Biol Chem, 2019, 294(42): 15395-15407. |
32 | XU J, CHEN M L, YAN Y N, et al. The effects of altered BMP4 signaling in first branchial-arch-derived murine embryonic orofacial tissues[J]. Int J Oral Sci, 2021, 13(1): 40. |
33 | HAN X, FENG J F, GUO T W, et al. Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis[J]. Elife, 2021, 10: e62387. |
34 | CHEN J Q, SHI Y, REGAN J, et al. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice[J]. PLoS One, 2014, 9(1): e85161. |
35 | DASH S, BHATT S, FALCON K T, et al. Med23 regulates Sox9 expression during craniofacial development[J]. J Dent Res, 2021, 100(4): 406-414. |
36 | YUE M H, LAN Y, LIU H, et al. Tissue-specific analysis of Fgf18 gene function in palate development[J]. Dev Dyn, 2021, 250(4): 562-573. |
37 | LUO S Y, LIU Z X, BIAN Q, et al. Ectomesenchymal Six1 controls mandibular skeleton formation[J]. Front Genet, 2023, 14: 1082911. |
38 | CHEN Y X, WANG Z S, CHEN Y P, et al. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice[J]. Cell Tissue Res, 2019, 376(2): 199-210. |
39 | XU J Y, LIU H, LAN Y, et al. A Shh-Foxf-Fgf18-Shh molecular circuit regulating palate development[J]. PLoS Genet, 2016, 12(1): e1005769. |
40 | KANO S, HIGASHIHORI N, THIHA P, et al. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development[J]. Biochem Biophys Res Commun, 2022, 598: 74-80. |
41 | NODA K, KITAMI M, KITAMI K, et al. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development[J]. Proc Natl Acad Sci U S A, 2016, 113(19): E2589-E2597. |
42 | YAMAGUCHI H, TERAJIMA M, KITAMI M, et al. IFT20 is critical for collagen biosynthesis in craniofacial bone formation[J]. Biochem Biophys Res Commun, 2020, 533(4): 739-744. |
43 | HIGASHIHORI N, LEHNERTZ B, SAMPAIO A, et al. Methyltransferase G9A regulates osteogenesis via Twist gene repression[J]. J Dent Res, 2017, 96(10): 1136-1144. |
44 | IDENO H, NAKASHIMA K, KOMATSU K, et al. G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development[J]. Bone, 2020, 137: 115332. |
45 | KAMIUNTEN T, IDENO H, SHIMADA A, et al. Essential roles of G9a in cell proliferation and differentiation during tooth development[J]. Exp Cell Res, 2017, 357(2): 202-210. |
46 | SONG Z C, LIU C, IWATA J, et al. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development[J]. J Biol Chem, 2013, 288(15): 10440-10450. |
47 | HOSOKAWA R, OKA K, YAMAZA T, et al. TGF-β mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue-tissue interactions during tongue morphogenesis[J]. Dev Biol, 2010, 341(1): 186-195. |
48 | CHEN X Y, WANG H M, YU M L, et al. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus[J]. Cell Death Differ, 2020, 27(4): 1415-1430. |
49 | DUVERGER O, OHARA T, BIBLE P W, et al. DLX3-dependent regulation of ion transporters and carbonic anhydrases is crucial for enamel mineralization[J]. J Bone Miner Res, 2017, 32(3): 641-653. |
50 | WANG J, XIAO Y, HSU C W, et al. Yap and Taz play a crucial role in neural crest-derived craniofacial development[J]. Development, 2016, 143(3): 504-515. |
51 | NGUYEN T T, MITCHELL J M, KIEL M D, et al. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway[J]. Development, 2024, 151(1): dev202095. |
52 | BILDSOE H, LOEBEL D A, JONES V J, et al. Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo[J]. Dev Biol, 2009, 331(2): 176-188. |
53 | KITAMI K, KITAMI M, KAKU M, et al. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development[J]. PLoS Genet, 2018, 14(5): e1007340. |
54 | JEONG J, MAO J H, TENZEN T, et al. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia[J]. Genes Dev, 2004, 18(8): 937-951. |
55 | ALMAIDHAN A, CESARIO J, LANDIN MALT A, et al. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation[J]. BMC Dev Biol, 2014, 14: 3. |
56 | ZHANG Y P, BLACKWELL E L, MCKNIGHT M T, et al. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with Hand2[J]. Dev Dyn, 2012, 241(5): 924-940. |
57 | MENG T, HUANG Y Y, WANG S Z, et al. Twist1 is essential for tooth morphogenesis and odontoblast differentiation[J]. J Biol Chem, 2015, 290(49): 29593-29602. |
58 | YAMAGUCHI H, KITAMI M, UCHIMA KOECKLIN K H, et al. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice[J]. Dev Biol, 2022, 482: 91-100. |
59 | BIOSSE DUPLAN M, DAMBROISE E, ESTIBALS V, et al. An Fgfr3-activating mutation in immature murine osteoblasts affects the appendicular and craniofacial skeleton[J]. Dis Model Mech, 2021, 14(4): dmm048272. |
60 | SUN X D, ZHANG R B, CHEN H G, et al. Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/β-catenin signaling[J]. Theranostics, 2020, 10(16): 7111-7130. |
61 | DAI Q, SUN S, JIN A, et al. Osteoblastic RAR inhibition causes VAD-like craniofacial skeletal deformity[J]. J Dent Res, 2023, 102(6): 667-677. |
62 | LEI L Z, HUANG Z W, FENG J Y, et al. Loss of receptor tyrosine kinase-like orphan receptor 2 impairs the osteogenesis of mBMSCs by inhibiting signal transducer and activator of transcription 3[J]. Stem Cell Res Ther, 2020, 11(1): 137. |
63 | YADAV P S, FENG S H, CONG Q, et al. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling[J]. Proc Natl Acad Sci U S A, 2021, 118(26): e2020100118. |
64 | CHEN W, MA J Q, ZHU G C, et al. Cbfβ deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfβ required for skeletal development[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8482-8487. |
65 | TIAN F, WU M R, DENG L F, et al. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation[J]. J Bone Miner Res, 2014, 29(7): 1564-1574. |
66 | LU L C, HARUTYUNYAN K, JIN W D, et al. RECQL4 regulates p53 function in vivo during skeletogenesis[J]. J Bone Miner Res, 2015, 30(6): 1077-1089. |
67 | GOODWIN A F, CHEN C P, VO N T, et al. YAP/TAZ regulate elevation and bone formation of the mouse secondary palate[J]. J Dent Res, 2020, 99(12): 1387-1396. |
68 | LIM W H, LIU B, CHENG D, et al. Wnt signaling regulates pulp volume and dentin thickness[J]. J Bone Miner Res, 2014, 29(4): 892-901. |
69 | CANALIS E, GROSSMAN T R, CARRER M, et al. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2020, 295(12): 3952-3964. |
70 | ZANOTTI S, YU J, SANJAY A, et al. Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2017, 292(29): 12232-12244. |
71 | LEE K K L, PESKETT E, QUINN C M, et al. Overexpression of Fgfr2c causes craniofacial bone hypoplasia and ameliorates craniosynostosis in the Crouzon mouse[J]. Dis Model Mech, 2018, 11(11): dmm035311. |
72 | KARUPPAIAH K, YU K, LIM J, et al. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth[J]. Development, 2016, 143(10): 1811-1822. |
73 | ZHAO X F, DENG P, IGLESIAS-BARTOLOME R, et al. Expression of an active Gαs mutant in skeletal stem cells is sufficient and necessary for fibrous dysplasia initiation and maintenance[J]. Proc Natl Acad Sci U S A, 2018, 115(3): E428-E437. |
74 | BEREZA S, YONG R, GRONTHOS S, et al. Craniomaxillofacial morphology in a murine model of ephrinB1 conditional deletion in osteoprogenitor cells[J]. Arch Oral Biol, 2022, 137: 105389. |
75 | THOMAS N, CHOI H K, WEI X X, et al. Autophagy regulates craniofacial bone acquisition[J]. Calcif Tissue Int, 2019, 105(5): 518-530. |
76 | XIONG Y, FANG Y, QIAN Y, et al. Wnt production in dental epithelium is crucial for tooth differentiation[J]. J Dent Res, 2019, 98(5): 580-588. |
77 | IWATA J I, SUZUKI A, YOKOTA T, et al. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate[J]. Development, 2014, 141(4): 909-917. |
78 | DUVERGER O, ISAAC J, ZAH A, et al. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones[J]. J Cell Physiol, 2013, 228(3): 654-664. |
79 | HOSOKAWA R, DENG X M, TAKAMORI K, et al. Epithelial-specific requirement of FGFR2 signaling during tooth and palate development[J]. J Exp Zool B Mol Dev Evol, 2009, 312B(4): 343-350. |
80 | JANEČKOVÁ E, FENG J F, GUO T W, et al. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis[J]. Development, 2023, 150(5): dev201189. |
81 | ARNOLD J S, WERLING U, BRAUNSTEIN E M, et al. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations[J]. Development, 2006, 133(5): 977-987. |
82 | KATSIMBRI P. The biology of normal bone remodelling[J]. Eur J Cancer Care, 2017, 26(6). DOI: 10.1111/ecc.12740. |
83 | MALTHA J C, KUIJPERS-JAGTMAN A M. Mechanobiology of orthodontic tooth movement: an update[J]. J World Fed Orthod, 2023, 12(4): 156-160. |
84 | SAFFAR J L, LASFARGUES J J, CHERRUAU M. Alveolar bone and the alveolar process: the socket that is never stable[J]. Periodontol 2000, 1997, 13: 76-90. |
85 | RANSOM R C, CARTER A C, SALHOTRA A, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration[J]. Nature, 2018, 563(7732): 514-521. |
86 | TANNE K, NAGATAKI T, MATSUBARA S, et al. Association between mechanical stress and bone remodeling[J]. J Osaka Univ Dent Sch, 1990, 30: 64-71. |
87 | SIBONGA J D. Spaceflight-induced bone loss: is there an osteoporosis risk?[J]. Curr Osteoporos Rep, 2013, 11(2): 92-98. |
88 | JIN A, HONG Y, YANG Y, et al. FOXO3 mediates tooth movement by regulating force-induced osteogenesis[J]. J Dent Res, 2022, 101(2): 196-205. |
89 | XU X, LIU S Y, LIU H, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone[J]. Int J Mol Sci, 2021, 22(12): 6429. |
90 | WANG X Y, HUANG X R, GAO X, et al. Differentiation potential of periodontal Col1+ cells under orthodontic force[J]. Mechanobiol Med, 2024, 2(1): 100026. |
91 | WANG Y J, LI J, ZHOU J P, et al. Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies[J]. Ultrasonics, 2022, 121: 106678. |
92 | ZHOU J, ZHU Y L, AI D Q, et al. Low-intensity pulsed ultrasound regulates osteoblast-osteoclast crosstalk via EphrinB2/EphB4 signaling for orthodontic alveolar bone remodeling[J]. Front Bioeng Biotechnol, 2023, 11: 1192720. |
93 | YANG C Y, JEON H H, ALSHABAB A, et al. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement[J]. Int J Oral Sci, 2018, 10(1): 3. |
94 | GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630. |
95 | MIURA M, GRONTHOS S, ZHAO M R, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812. |
96 | WEI F L, SONG T L, DING G, et al. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine[J]. Stem Cells Dev, 2013, 22(12): 1752-1762. |
97 | LIU Y, YANG R L, LIU X B, et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration[J]. Cell Stem Cell, 2014, 15(1): 66-78. |
98 | XUAN K, LI B, GUO H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10(455): eaaf3227. |
99 | MARUYAMA T, JEONG J, SHEU T J, et al. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration[J]. Nat Commun, 2016, 7: 10526. |
100 | WILK K, YEH S C A, MORTENSEN L J, et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration[J]. Stem Cell Reports, 2017, 8(4): 933-946. |
101 | ZHAO H, FENG J F, HO T V, et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015, 17(4): 386-396. |
102 | ORTINAU L C, WANG H, LEI K, et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells[J]. Cell Stem Cell, 2019, 25(6): 784-796.e5. |
103 | WENG Y T, WANG H C, WU D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL[J]. Cell Res, 2022, 32(9): 814-830. |
104 | ZHANG N, BARRELL W B, LIU K J. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible[J]. J Anat, 2023, 243(1): 90-99. |
105 | DING Y, MO C, GENG J, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109. |
106 | ROGULJIC H, MATTHEWS B G, YANG W, et al. In vivo identification of periodontal progenitor cells[J]. J Dent Res, 2013, 92(8): 709-715. |
107 | YUAN X, PEI X, ZHAO Y, et al. A Wnt-responsive PDL population effectuates extraction socket healing[J]. J Dent Res, 2018, 97(7): 803-809. |
108 | BASSIR S H, GARAKANI S, WILK K, et al. Prx1 expressing cells are required for periodontal regeneration of the mouse incisor[J]. Front Physiol, 2019, 10: 591. |
109 | ZHAO H, FENG J F, SEIDEL K, et al. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor[J]. Cell Stem Cell, 2014, 14(2): 160-173. |
110 | TAKAHASHI A, NAGATA M, GUPTA A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption[J]. Proc Natl Acad Sci U S A, 2019, 116(2): 575-580. |
111 | KAUKUA N, SHAHIDI M K, KONSTANTINIDOU C, et al. Glial origin of mesenchymal stem cells in a tooth model system[J]. Nature, 2014, 513(7519): 551-554. |
112 | CHEN H, FU H C, WU X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells[J]. Sci Adv, 2020, 6(15): eaay1514. |
113 | ZHANG D, ZHANG S, WANG J, et al. LepR-expressing stem cells are essential for alveolar bone regeneration[J]. J Dent Res, 2020, 99(11): 1279-1286. |
114 | SHALEHIN N, SEKI Y, TAKEBE H, et al. Gli1+-PDL cells contribute to alveolar bone homeostasis and regeneration[J]. J Dent Res, 2022, 101(12): 1537-1543. |
115 | WU L D, LIU Z X, XIAO L, et al. The role of Gli1+ mesenchymal stem cells in osteogenesis of craniofacial bone[J]. Biomolecules, 2023, 13(9): 1351. |
116 | BUECHLER M B, PRADHAN R N, KRISHNAMURTY A T, et al. Cross-tissue organization of the fibroblast lineage[J]. Nature, 2021, 593(7860): 575-579. |
117 | LI W D, CAVELTI-WEDER C, ZHANG Y Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells[J]. Nat Biotechnol, 2014, 32(12): 1223-1230. |
118 | TANG J, WANG H X, HUANG X Z, et al. Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration[J]. Cell Stem Cell, 2020, 26(1): 81-96.e4. |
119 | SUN J, HU L L, BOK S, et al. A vertebral skeletal stem cell lineage driving metastasis[J]. Nature, 2023, 621(7979): 602-609. |
120 | JING J J, FENG J F, YUAN Y, et al. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis[J]. Nat Commun, 2022, 13(1): 4803. |
[1] | ZHOU Yue, CHENG Chen, ZHENG Enlin, MENG Zhuo, WANG Jian, WANG Qingjie, HE Yongning, SUN Kun. Exploring potential new receptors for ELABELA in human embryonic stem cells by Crispr/Cas9-mediated gene editing system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1258-1264. |
[2] | HAN Xiaxia, GU Shuangshuang, DAI Dai, SHEN Nan. Application of CRISPR/Cas9-mediated gene editing system to studying the regulation of T-bet in B cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 433-442. |
[3] | Yan-na ZHAO, Rong QIU, Nan SHEN, Yuan-jia TANG. Construction of inducible CRISPR/Cas9 system for studying gene function in mouse [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 297-301. |
[4] | YANG Qian-hao, ZHU Dao-yu, CHEN Yi-xuan, GAO You-shui, ZHANG Chang-qing. Research progress of roles of mammalian target of rapamycin signaling in bone homeostasis and associated diseases [J]. , 2018, 38(11): 1391-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||