Case study of the molecular classification and prognostic prediction of gastric cancer based on nonnegative matrix factorization#br#

  • CAO Ying-ying ,
  • ZHU Xiao-qiang ,
  • CHEN Hao-yan
Expand
  • Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China

Online published: 2017-10-10

Supported by

National Natural Science Foundation of China, 31371273; “Youth Eastern Scholar” at Shanghai Institutions of Higher Learning, QD2015003; Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support, 20161309

Abstract

Objective · To explore the molecular classification and prognostic prediction of gastric cancer based on nonnegative matrix factorization (NMF).  Methods · Cases of gastric cancer were acquired from Gene Expression Omnibus (GEO). Expression profiling of lncRNA was performed by using a lncRNA-mining approach. NMF model was built with Consensus Cluster Plus package. The relationship among NMF subgroups and clinical relevance was assessed.  Results · According to the molecular classification based on NMF, samples were divided into three subgroups. Significant difference was observed in relapse state, lymph node ratio, Lauren classification, TNM stage and age of onset among three subgroups. High-risk group was identified with shortest relapse time by survival analysis both in GSE62254 and GSE15459. Multivariate Cox proportional-hazards regression showed that NMF model based molecular classfication could be regarded as an independent risk factor for gastric cancer. Gene set variance analysis (GSVA) and gene set enrichment analysis (GSEA) showed that the high-risk subgroup was enriched in several tumor development pathways.  Conclusion · Based on NMF model, the molecular classification of gastric cancer can be used for treatment decision and prognostic prediction.

Cite this article

CAO Ying-ying , ZHU Xiao-qiang , CHEN Hao-yan . Case study of the molecular classification and prognostic prediction of gastric cancer based on nonnegative matrix factorization#br#[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2017 , 37(9) : 1188 . DOI: 10.3969/j.issn.1674-8115.2017.09.001

Outlines

/