Journal of Shanghai Jiao Tong University (Medical Science) >
Electron microscopic study of the human MDN1 protein
Online published: 2021-05-27
Supported by
National Natural Science Foundation of China(31525007)
·To study the structure of the human midasin AAA-ATPase 1 (MDN1, Rea1) protein by negative-staining electron microscopy.
·Using the CRISPR/Cas9 genome editing method, a 3×FLAG affinity tag was inserted into the N-terminus of MDN1 in Expi293F cells. Tagged proteins were isolated via affinity purification with ANTI-FLAG? M2 Agarose Affinity Gel, followed by glycerol density gradient centrifugation. The purified protein sample was then subjected to negative-staining electron microscopy and single particle image analysis.
·The FLAG-tagged endogenous MDN1 proteins with high purity and good homogeneity were obtained using affinity chromatography and density gradient centrifugation. Preliminary study on the structure of human MDN1 was achieved by 120 kV electron microscope after negative staining with uranium formate.
·A low resolution model of human MDN1 protein was achieved by single particle reconstruction analysis.
Yun-tao XU , Ming-yue LI , Ming LEI . Electron microscopic study of the human MDN1 protein[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021 , 41(5) : 559 -564 . DOI: 10.3969/j.issn.1674-8115.2021.05.001
1 | Kressler D, Hurt E, Bergler H, et al. The power of AAA-ATPases on the road of pre-60S ribosome maturation: molecular machines that strip pre-ribosomal particles[J]. Biochim Biophys Acta, 2012, 1823(1): 92-100. |
2 | Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae[J]. Genetics, 2013, 195(3): 643-681. |
3 | Kater L, Thoms M, Barrio-Garcia C, et al. Visualizing the assembly pathway of nucleolar pre-60S ribosomes[J]. Cell, 2017, 171(7): 1599-1610.e14. |
4 | Venturi G, Montanaro L. How altered ribosome production can cause or contribute to human disease: the spectrum of ribosomopathies[J]. Cells, 2020, 9(10): 2300 |
5 | Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction[J]. Blood, 2010, 115(16): 3196-3205. |
6 | Pelava A, Schneider C, Watkins NJ. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease[J]. Biochem Soc Trans, 2016, 44(4): 1086-1090. |
7 | Konikkat S, Woolford JL. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast[J]. Biochem J, 2017, 474(2): 195-214. |
8 | Patel S, Latterich M. The AAA team: related ATPases with diverse functions[J]. Trends Cell Biol, 1998, 8(2): 65-71. |
9 | Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work[J]. Nat Rev Mol Cell Biol, 2005, 6(7): 519-529. |
10 | Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the nascent ribosome: AAA-ATPases in eukaryotic ribosome biogenesis[J]. Biomolecules, 2019, 9(11): 715. |
11 | Wendler P, Ciniawsky S, Kock M, Kube S. Structure and function of the AAA+ nucleotide binding pocket[J]. Biochim Biophys Acta, 2012, 1823(1):2-14. |
12 | Gadal O, Strauss D, Braspenning J, et al. A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits[J]. EMBO J, 2001, 20(14): 3695-3704. |
13 | Lo YH, Sobhany M, Hsu AL, et al. Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7[J]. Nat Commun, 2019, 10(1): 513. |
14 | Pertschy B, Saveanu C, Zisser G, et al. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1[J]. Mol Cell Biol, 2007, 27(19): 6581-6592. |
15 | Pertschy B, Zisser G, Schein H, et al. Diazaborine treatment of yeast cells inhibits maturation of the 60S ribosomal subunit[J]. Mol Cell Biol, 2004, 24(14): 6476-6487. |
16 | Miles TD, Jakovljevic J, Horsey EW, et al. Ytm1, Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes[J]. Mol Cell Biol, 2005, 25(23): 10419-10432. |
17 | Galani K, Nissan TA, Petfalski E, et al. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60S subunits[J]. J Biol Chem, 2004, 279(53): 55411-55418. |
18 | Ulbrich C, Diepholz M, Bassler J, et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits[J]. Cell, 2009, 138(5): 911-922. |
19 | Li PC, Ma JJ, Zhou XM, et al. Arabidopsis MDN1 is involved in the establishment of a normal seed proteome and seed germination[J]. Front Plant Sci, 2019, 10: 1118. |
20 | Finkbeiner E, Haindl M, Raman N, et al. SUMO routes ribosome maturation[J]. Nucleus, 2011, 2(6): 527-532. |
21 | Li PC, Li K, Wang J, et al. The AAA-ATPase MIDASIN 1 functions in ribosome biogenesis and is essential for embryo and root development [J]. Plant Physiol, 2019, 180(1): 289-304. |
22 | Bassler J, Kallas M, Pertschy B, et al. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly[J]. Mol Cell, 2010, 38(5): 712-721. |
23 | Nissan TA, Galani K, Maco B, et al. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits[J]. Mol Cell, 2004, 15(2): 295-301. |
24 | Chen Z, Suzuki H, Kobayashi Y, et al. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis[J]. Cell, 2018, 175(3): 822-834.e18. |
25 | Sosnowski P, Urnavicius L, Boland A, et al. The CryoEM structure of the Saccharomyces cerevisiae ribosome maturation factor Rea1[J]. Elife. 2018, 7: e39163. |
26 | Kawashima SA, Chen Z, Aoi Y, et al. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis[J]. Cell, 2016, 167(2): 512-524. |
27 | Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6): 659-662. |
28 | Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308. |
29 | Tang G, Peng L, Baldwin PR, et al. EMAN2: an extensible image processing suite for electron microscopy[J]. J Struct Biol, 2007, 157(1): 38-46. |
30 | Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination[J]. J Struct Biol, 2012, 180(3): 519-530. |
31 | Yang JY, Zhang Y. I-TASSER server: new development for protein structure and function predictions[J]. Nucleic Acids Res, 2015, 43(W1): W174-W181. |
32 | Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. J Comput Chem, 2004, 25(13): 1605-1612. |
/
〈 |
|
〉 |