Review

Review of the role of pyroptosis in benign prostatic hyperplasia in old males

  • Zixuan CHEN ,
  • Dong LI ,
  • Min LIU
Expand
  • Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
LIU Min, E-mail: lm4104@shtrhospital.com.

Received date: 2023-06-07

  Accepted date: 2023-11-30

  Online published: 2024-02-01

Supported by

National Natural Science Foundation of China(82172809)

Abstract

Pyroptosis, a new mode of programmed cell death, is primarily characterized by persistent cellular swelling that culminates in cell rupture. This process results in the release of large amounts of inflammatory factors, subsequently triggering an inflammatory response. Benign prostatic hyperplasia (BPH) is the most frequent urological disease in old males and is closely associated with changes in hormones and inflammation response. In recent years, the role of pyroptosis in the occurrence and development of BPH has also received increasing attention. This article summarizes the mechanisms of pyroptosis, concludes the pathogenesis associated with BPH in old males, and outlines the role of pyroptosis in BPH, to provide new ideas for finding more effective therapeutic measures for BPH through pyroptosis.

Cite this article

Zixuan CHEN , Dong LI , Min LIU . Review of the role of pyroptosis in benign prostatic hyperplasia in old males[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023 , 43(12) : 1569 -1576 . DOI: 10.3969/j.issn.1674-8115.2023.12.013

References

1 张皓博, 赵宇楠, 杨学军. 细胞焦亡在椎间盘退变中的作用及治疗意义[J]. 中国组织工程研究, 2022, 26(9): 1445-1451.
1 ZHANG H B, ZHAO Y N, YANG X J. Role and therapeutic implications of pyroptosis in intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1445-1451.
2 ZHENG X T, CHEN W W, GONG F C, et al. The role and mechanism of pyroptosis and potential therapeutic targets in Sepsis: a review[J]. Front Immunol, 2021, 12: 711939.
3 NAIYILA X, LI J Z, HUANG Y, et al. A novel insight into the immune-related interaction of inflammatory cytokines in benign prostatic hyperplasia[J]. J Clin Med, 2023, 12(5): 1821.
4 TRIPATHI U, MISRA A, TCHKONIA T, et al. Impact of senescent cell subtypes on tissue dysfunction and repair: importance and research questions[J]. Mech Ageing Dev, 2021, 198: 111548.
5 李泽安, 谢俊佳, 陈君秀, 等. 微环境与良性前列腺增生发病机制的研究进展[J]. 中华泌尿外科杂志, 2022, 43(9): 717-720.
5 LI Z A, XIE J J, CHEN J X, et al. Role of microenvironment in the pathogenesis of benign prostatic hyperplasia[J]. Chinese Journal of Urology, 2022, 43(9): 717-720.
6 ZHAO M, GUO J, GAO Q H, et al. Relationship between pyroptosis-mediated inflammation and the pathogenesis of prostate disease[J]. Front Med (Lausanne), 2023, 10: 1084129.
7 TANG R, XU J, ZHANG B, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity[J]. J Hematol Oncol, 2020, 13(1): 110.
8 LI L S, JIANG M X, QI L, et al. Pyroptosis, a new bridge to tumor immunity[J]. Cancer Sci, 2021, 112(10): 3979-3994.
9 郑小雁, 王星云, 张拥军. 抑制肺泡上皮细胞焦亡对支气管肺发育不良新生大鼠肺泡化阻滞的改善作用[J]. 上海交通大学学报(医学版), 2023, 43(2): 171-179.
9 ZHENG X Y, WANG X Y, ZHANG Y J. Improvement of alveolarization arrest in newborn rats with bronchopulmonary dysplasia via inhibiting alveolar epithelial cell pyroptosis[J]. Journal of Shanghai Jiao tong University:Medical Science, 2023, 43(2): 171-179.
10 WEI X, XIE F, ZHOU X X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022, 19(9): 971-992.
11 RAO Z P, ZHU Y T, YANG P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329.
12 HSU S K, LI C Y, LIN I L, et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment[J]. Theranostics, 2021, 11(18): 8813-8835.
13 HU Z H, CHAI J J. Assembly and architecture of NLR resistosomes and inflammasomes[J]. Annu Rev Biophys, 2023, 52: 207-228.
14 MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520.
15 WEI Y N, YANG L, PANDEYA A, et al. Pyroptosis-induced inflammation and tissue damage[J]. J Mol Biol, 2022, 434(4): 167301.
16 YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128.
17 WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103.
18 ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): eaaz7548.
19 SARRIó D, MARTíNEZ-VAL J, MOLINA-CRESPO á, et al. The multifaceted roles of gasdermins in cancer biology and oncologic therapies[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188635.
20 OLTRA S S, COLOMO S, SIN L, et al. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells[J]. Cell Death Differ, 2023, 30(5): 1366-1381.
21 JIN B R, KIM H J, NA J H, et al. Targeting benign prostate hyperplasia treatments: AR/TGF-β/NOX4 inhibition by apocynin suppresses inflammation and proliferation[J]. J Adv Res, 2023: S2090-S1232(23)00112-1.
22 TONG Y, ZHOU R Y. Review of the roles and interaction of androgen and inflammation in benign prostatic hyperplasia[J]. Mediators Inflamm, 2020, 2020: 7958316.
23 HONG G L, KIM K H, KIM Y J, et al. Decreased mitophagy aggravates benign prostatic hyperplasia in aged mice through DRP1 and estrogen receptor α[J]. Life Sci, 2022, 309: 120980.
24 CANNARELLA R, CONDORELLI R A, BARBAGALLO F, et al. Endocrinology of the aging prostate: current concepts[J]. Front Endocrinol (Lausanne), 2021, 12: 554078.
25 AHEARN T U, PEISCH S, PETTERSSON A, et al. Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease[J]. Carcinogenesis, 2018, 39(12): 1431-1437.
26 CAO D H, SUN R N, PENG L, et al. Immune cell proinflammatory microenvironment and androgen-related metabolic regulation during benign prostatic hyperplasia in aging[J]. Front Immunol, 2022, 13: 842008.
27 BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24): 1565-1576.
28 FIARD G, STAVRINIDES V, CHAMBERS E S, et al. Cellular senescence as a possible link between prostate diseases of the ageing male[J]. Nat Rev Urol, 2021, 18(10): 597-610.
29 LóPEZ-OTíN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278.
30 CAO Y, ZHANG H, TU G L, et al. The symptoms of benign prostatic hyperplasia patients with stromal-dominated hyperplasia nodules may be associated with prostate fibrosis[J]. Int J Gen Med, 2023, 16: 1181-1191.
31 ROYUELA M, DE MIGUEL M P, BETHENCOURT F R, et al. Transforming growth factor beta 1 and its receptor types Ⅰ and Ⅱ. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma[J]. Growth Factors, 1998, 16(2): 101-110.
32 VICKMAN R E, AARON-BROOKS L, ZHANG R Y, et al. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease[J]. Nat Commun, 2022, 13(1): 2133.
33 ALONSO-MAGDALENA P, BR?SSNER C, REINER A, et al. A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia[J]. Proc Natl Acad Sci USA, 2009, 106(8): 2859-2863.
34 LI Q, HONG Y F, CHEN J, et al. Hypoxia-induced HIF-1α expression promotes neurogenic bladder fibrosis via EMT and pyroptosis[J]. Cells, 2022, 11(23): 3836.
35 WANG Z, ZHANG Y C, ZHAO C, et al. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells[J]. Cell Signal, 2021, 84: 110004.
36 JIA C Q, ZHANG Z Q, TANG J, et al. Epithelial-mesenchymal transition induces GSDME transcriptional activation for inflammatory pyroptosis[J]. Front Cell Dev Biol, 2021, 9: 781365.
37 BOSTWICK D G, EGEVAD L. Prostatic stromal proliferations: a review[J]. Pathology, 2021, 53(1): 12-25.
38 ZHANG C, ZHAI T Y, ZHU J H, et al. Research progress of antioxidants in oxidative stress therapy after spinal cord injury[J]. Neurochem Res, 2023, 48(12): 3473-3484.
39 MIAO C Y, ZHAO Y, CHEN Y, et al. Investigation of He's Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function[J]. Front Endocrinol (Lausanne), 2023, 14: 1077315.
40 ZHANG C Y, LIN T J, NIE G H, et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272: 116403.
41 REBELO A P, EIDHOF I, CINTRA V P, et al. Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia[J]. Brain, 2021, 144(5): 1467-1481.
42 JIANG M Y, HAN Z D, LI W J, et al. Mitochondrion-associated protein peroxiredoxin 3 promotes benign prostatic hyperplasia through autophagy suppression and pyroptosis activation[J]. Oncotarget, 2017, 8(46): 80295-80302.
43 QUAN Y, XIN Y G, TIAN G E, et al. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging[J]. Oxid Med Cell Longev, 2020, 2020: 9423593.
44 CHEN W F, HUANG X Q, PENG A X, et al. Kangquan recipe regulates the expression of BAMBI protein via the TGF- β/Smad signaling pathway to inhibit benign prostatic hyperplasia in rats[J]. Evid Based Complement Alternat Med, 2019, 2019: 6281819.
45 FUSCO F, CRETA M, DE NUNZIO C, et al. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans[J]. BMC Urol, 2018, 18(1): 15.
46 WANG K, CHEN L, YANG J, et al. Urethral meatus stricture BOO stimulates bladder smooth muscle cell proliferation and pyroptosis via IL?1β and the SGK1?NFAT2 signaling pathway[J]. Mol Med Rep, 2020, 22(1): 219-226.
47 KUSTRIMOVIC N, BOMBELLI R, BACI D, et al. Microbiome and prostate cancer: a novel target for prevention and treatment[J]. Int J Mol Sci, 2023, 24(2): 1511.
48 BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121.
Outlines

/