Topics on advances in translational medicine frontiers

Research progress of the role of intestinal microbiota-mediated bile acids in inflammatory bowel disease

  • Xixi XIA ,
  • Keke DING ,
  • Huiheng ZHANG ,
  • Xufei PENG ,
  • Yimin SUN ,
  • Yajun TANG ,
  • Xiaofang TANG
Expand
  • 1.Center for Translational Medicine, Shanghai Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    2.Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
TANG Xiaofang, E-mail: tangxiaofang19840@163.com.

Received date: 2024-01-30

  Accepted date: 2024-04-03

  Online published: 2024-07-28

Supported by

Shanghai Magnolia Talent Plan Pujiang Project(23PJ1410700)

Abstract

It is estimated that approximately seven million people worldwide are affected by inflammatory bowel disease (IBD), causing a huge burden on healthcare systems and society. In the occurrence, progression, and treatment of IBD, the intestinal microbiota and its key metabolic product, bile acids, play a crucial role. The intestinal microbiota not only participates in the biotransformation of bile acids, enriching the diversity of bile acids, but also regulates their synthesis and transport through the farnesoid X receptor (FXR). Meanwhile, bile acids contribute to regulating the structure and function of the intestinal microbiota by supporting microbial diversity, exerting direct toxicity, participating in indirect antimicrobial pathways, and influencing microbial metabolic capabilities. Furthermore, under normal physiological conditions, intestinal microbiota-derived bile acids facilitate the repair process of the intestinal epithelial barrier. They also promote the balance of the immune system by modulating the functions of various immune cells including helper T (Th) cells 17, regulatory T (Treg) cells, CD8+ T cells and natural killer T(NKT) cells, thereby slowing down the development of IBD. This article focuses on exploring the role of intestinal microbiota and bile acids in the onset and progression of IBD, and investigating new effective treatment strategies by targeting intestinal microbiota and bile acids, such as bile acid receptor modulators, probiotics, prebiotics, fecal microbiota transplantation (FMT), and phage therapy.

Cite this article

Xixi XIA , Keke DING , Huiheng ZHANG , Xufei PENG , Yimin SUN , Yajun TANG , Xiaofang TANG . Research progress of the role of intestinal microbiota-mediated bile acids in inflammatory bowel disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024 , 44(7) : 839 -846 . DOI: 10.3969/j.issn.1674-8115.2024.07.005

References

1 SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679.
2 KAPLAN G G, WINDSOR J W. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66.
3 SARTOR R B, WU G D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches[J]. Gastroenterology, 2017, 152(2): 327-339.e4.
4 LIU S, ZHAO W J, LAN P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
5 SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468.
6 QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797): 123-129.
7 SONG Z W, CAI Y Y, LAO X Z, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7(1): 9.
8 TANG B, TANG L, LI S P, et al. Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy[J]. Nat Commun, 2023, 14(1): 1305.
9 GOODWIN B, JONES S A, PRICE R R, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526.
10 KONG B, WANG L, CHIANG J Y, et al. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice[J]. Hepatology, 2012, 56(3): 1034-1043.
11 DENSON L A, STURM E, ECHEVARRIA W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp[J]. Gastroenterology, 2001, 121(1): 140-147.
12 CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573.
13 SUN L L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929.
14 ZHANG X Q, OSAKA T, TSUNEDA S. Bacterial metabolites directly modulate farnesoid X receptor activity[J]. Nutr Metab, 2015, 12: 48.
15 VAN BEST N, ROLLE-KAMPCZYK U, SCHAAP F G, et al. Bile acids drive the newborn′s gut microbiota maturation[J]. Nat Commun, 2020, 11(1): 3692.
16 TIAN Y, GUI W, KOO I, et al. The microbiome modulating activity of bile acids[J]. Gut Microbes, 2020, 11(4): 979-996.
17 WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58(6): 1143-1152.
18 LI Y, TANG R Q, LEUNG P S C, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896.
19 CREMERS C M, KNOEFLER D, VITVITSKY V, et al. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo[J]. Proc Natl Acad Sci U S A, 2014, 111(16): E1610-E1619.
20 D'ALDEBERT E, BIYEYEME BI MVE M J, MERGEY M, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium[J]. Gastroenterology, 2009, 136(4): 1435-1443.
21 INAGAKI T, MOSCHETTA A, LEE Y K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3920-3925.
22 KAKIYAMA G, PANDAK W M, GILLEVET P M, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
23 MOUSA O Y, JURAN B D, MCCAULEY B M, et al. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation[J]. Hepatology, 2021, 74(1): 281-295.
24 SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.e5.
25 XU M Q, CEN M S, SHEN Y Q, et al. Deoxycholic acid-induced gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation[J]. Dig Dis Sci, 2021, 66(2): 568-576.
26 LI T, DING N, GUO H Q, et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage[J]. Cell Host Microbe, 2024, 32(2): 191-208.e9.
27 CHEN L, JIAO T Y, LIU W W, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal[J]. Cell Stem Cell, 2022, 29(9): 1366-1381.e9.
28 JIANG W Y, SU J W, ZHANG X F, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease[J]. Inflamm Res, 2014, 63(11): 943-950.
29 PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce Τh17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912.
30 CARUSO R, LO B C, Nú?EZ G. Host-microbiota interactions in inflammatory bowel disease[J]. Nat Rev Immunol, 2020, 20(7): 411-426.
31 SONG X Y, SUN X M, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415.
32 LI W, HANG S Y, FANG Y, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1[J]. Cell Host Microbe, 2021, 29(9): 1366-1377.e9.
33 LEE J C, LYONS P A, MCKINNEY E F, et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis[J]. J Clin Invest, 2011, 121(10): 4170-4179.
34 DING C J, HONG Y, CHE Y, et al. Bile acid restrained T cell activation explains cholestasis aggravated hepatitis B virus infection[J]. FASEB J, 2022, 36(9): e22468.
35 ZHU C, BOUCHERON N, MüLLER A C, et al. 24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation[J]. J Hepatol, 2021, 75(5): 1164-1176.
36 KHAN K J, ULLMAN T A, FORD A C, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis[J]. Am J Gastroenterol, 2011, 106(4): 661-673.
37 HU C L, LIAO S T, LV L, et al. Intestinal immune imbalance is an alarm in the development of IBD[J]. Mediators Inflamm, 2023, 2023: 1073984.
38 MA C, HAN M J, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5931.
39 CHENG P, WU J W, ZONG G F, et al. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver[J]. Pharmacol Res, 2023, 188: 106643.
40 SHAO J W, GE T T, TANG C L, et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis[J]. Inflamm Res, 2022, 71(10/11): 1389-1401.
41 CHEN Y, LE T H, DU Q M, et al. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling[J]. Int Immunopharmacol, 2019, 71: 144-154.
42 CAMPBELL C, MCKENNEY P T, KONSTANTINOVSKY D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581(7809): 475-479.
43 FAN L N, QI Y D, QU S W, et al. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling[J]. Gut Microbes, 2021, 13(1): 1-17.
44 ALMO M M D, SOUSA I G, OLINTO V G, et al. Therapeutic effects of Zymomonas mobilis on experimental DSS-induced colitis mouse model[J]. Microorganisms, 2023, 11(11): 2793.
45 ZHOU J, LI M Y, CHEN Q F, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022, 13(1): 3432.
46 VALCHEVA R, KOLEVA P, MARTíNEZ I, et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes, 2019, 10(3): 334-357.
47 AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discov Ther, 2019, 13(1): 1-8.
48 ZHANG Z Z, PAN Y, GUO Z Y, et al. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease[J]. Bioact Mater, 2024, 33: 71-84.
49 ARMSTRONG H K, BORDING-JORGENSEN M, SANTER D M, et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients[J]. Gastroenterology, 2023, 164(2): 228-240.
50 MOAYYEDI P, SURETTE M G, KIM P T, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial[J]. Gastroenterology, 2015, 149(1): 102-109.e6.
51 COSTELLO S P, HUGHES P A, WATERS O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164.
52 SOKOL H, LANDMAN C, SEKSIK P, et al. Fecal microbiota transplantation to maintain remission in Crohn′s disease: a pilot randomized controlled study[J]. Microbiome, 2020, 8(1): 12.
53 KONG L J, LLOYD-PRICE J, VATANEN T, et al. Linking strain engraftment in fecal microbiota transplantation with maintenance of remission in Crohn's disease[J]. Gastroenterology, 2020, 159(6): 2193-2202.e5.
54 FEDERICI S, KREDO-RUSSO S, VALDéS-MAS R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16): 2879-2898.e24.
55 ZHANG L S, WANG Y D, CHEN W D, et al. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice[J]. Hepatology, 2012, 56(6): 2336-2343.
56 GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472.
57 GOHDA K, IGUCHI Y, MASUDA A, et al. Design and identification of a new farnesoid X receptor (FXR) partial agonist by computational structure-activity relationship analysis: ligand-induced H8 helix fluctuation in the ligand-binding domain of FXR may lead to partial agonism[J]. Bioorg Med Chem Lett, 2021, 41: 128026.
Outlines

/