Oral and Cranio-maxillofacial Science

Progress in the regulatory mechanisms of mandibular condylar development and deformity

  • Jingyi LIU ,
  • Hongyuan XU ,
  • Qinggang DAI ,
  • Lingyong JIANG
Expand
  • Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
JIANG Lingyong, E-mail: jianglingyong@sjtu.edu.cn.

Received date: 2024-02-21

  Accepted date: 2024-07-19

  Online published: 2024-08-27

Supported by

National Natural Science Foundation of China(82071083);Fundamental Research Funds for the Central Universities(YG2023ZD14);“Two-Hundred Talent” Project of Shanghai Jiao Tong University School of Medicine(20221809);Natural Science Foundation of Shanghai(21ZR1436900);Shanghai Science and Technology Innovation Action Plan—International Science and Technology Cooperation Program(23410713600);Cross-Disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(JYJC202116);Biomaterials and Regenerative Medicine Institute Cooperative Research Project, Shanghai Jiao Tong University School of Medicine(2022LHB02);Original Exploration Project of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(JYYC003)

Abstract

The temporomandibular joint is the only joint structure within the craniofacial skeletal system, responsible for performing functions related to opening and closing mouth movements, such as chewing, speaking, and facial expression in daily life. The condyle of the mandible, as a vital component of the temporomandibular joint, originates from the mandibular process formed by the first gill arch and is the key growth center at the end of the mandibular ramus. Condyle is composed of a layer of cartilage as its surface and subchondral bone below, exhibiting unique biological processes during its growth and development. In the articular fossa, the functional movement of the condyle depends on its normal physiological and anatomical structure, which plays a crucial role in establishing occlusion and shaping facial features. Abnormal growth and development can lead to the occurrence of condylar deformities, which affect the vertical height of the patient's maxillofacial region and ultimately lead to secondary skeletal class Ⅱ or Ⅲ craniofacial deformities. During the process of growth and development, the condyle is subject to complex signal regulation. In recent years, with in-depth research on the temporomandibular joint, researchers have begun to discuss the regulatory mechanisms of condyle growth and development from the perspectives of gene expression and molecular level, in order to explain the causes of temporomandibular joint diseases and condylar deformities. This article provides a review on the growth process and structure of condyle, classification and pathological manifestations of condylar deformities, and related regulatory mechanisms of the growth and development of condyle, as well as pathogenesis of condylar deformities. The aim of this article is to provide research ideas for temporomandibular joint diseases and craniofacial malformations caused by abnormal development of the mandibular condyle in clinical practice.

Cite this article

Jingyi LIU , Hongyuan XU , Qinggang DAI , Lingyong JIANG . Progress in the regulatory mechanisms of mandibular condylar development and deformity[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024 , 44(8) : 951 -958 . DOI: 10.3969/j.issn.1674-8115.2024.08.003

References

1 STOCUM D L, ROBERTS W E. Part Ⅰ: development and physiology of the temporomandibular joint[J]. Curr Osteoporos Rep, 2018, 16(4): 360-368.
2 KAYIPMAZ S, AK?AY S, SEZGIN ? S, et al. Trabecular structural changes in the mandibular condyle caused by degenerative osteoarthritis: a comparative study by cone-beam computed tomography imaging[J]. Oral Radiol, 2019, 35(1): 51-58.
3 UMEDA M, TERAO F, MIYAZAKI K, et al. MicroRNA-200a regulates the development of mandibular condylar cartilage[J]. J Dent Res, 2015, 94(6): 795-802.
4 TSUTSUMI-ARAI C, ARAI Y, TRAN A, et al. A PTHrP gradient drives mandibular condylar chondrogenesis via Runx2[J]. J Dent Res, 2024, 103(1): 91-100.
5 TANG G H, RABIE A B. Runx2 regulates endochondral ossification in condyle during mandibular advancement[J]. J Dent Res, 2005, 84(2): 166-171.
6 HIROUCHI H, KITAMURA K, YAMAMOTO M, et al. Developmental characteristics of secondary cartilage in the mandibular condyle and sphenoid bone in mice[J]. Arch Oral Biol, 2018, 89: 84-92.
7 XU X J, ZHANG Y J, ZHANG J, et al. Zonal interdependence in the temporomandibular joint cartilage[J]. FASEB J, 2023, 37(4): e22888.
8 GIBSON G. Active role of chondrocyte apoptosis in endochondral ossification[J]. Microsc Res Tech, 1998, 43(2): 191-204.
9 JING Y, ZHOU X, HAN X, et al. Chondrocytes directly transform into bone cells in mandibular condyle growth[J]. J Dent Res, 2015, 94(12): 1668-1675.
10 HINTON R J, JING Y, JING J, et al. Roles of chondrocytes in endochondral bone formation and fracture repair[J]. J Dent Res, 2017, 96(1): 23-30.
11 ZHU Q Q, TAN M Y, WANG C N, et al. Single-cell RNA sequencing analysis of the temporomandibular joint condyle in 3 and 4-month-old human embryos[J]. Cell Biosci, 2023, 13(1): 130.
12 刘纯, 贾莹, 杨世榕, 等. 大鼠髁突软骨下骨骨微结构生长发育的特征[J]. 中国组织工程研究, 2022, 26(32): 5162-5166.
12 LIU C, JIA Y, YANG S S, et al. Characteristics of the growth, development and microarchitecture of condyle subchondral bone in rats[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(32): 5162-5166.
13 KANEYAMA K, SEGAMI N, HATTA T. Congenital deformities and developmental abnormalities of the mandibular condyle in the temporomandibular joint[J]. Congenit Anom, 2008, 48(3): 118-125.
14 GALEA C J, DASHOW J E, WOERNER J E. Congenital abnormalities of the temporomandibular joint[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(1): 71-82.
15 CHOUINARD A F, KABAN L B, PEACOCK Z S. Acquired abnormalities of the temporomandibular joint[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(1): 83-96.
16 YU J S, YANG T, DAI J W, et al. Histopathological features of condylar hyperplasia and condylar Osteochondroma: a comparison study[J]. Orphanet J Rare Dis, 2019, 14(1): 293.
17 VáSQUEZ B, OLATE S, CANTíN M, et al. Histomorphometric analysis of unilateral condylar hyperplasia in the temporomandibular joint: the value of the condylar layer and cartilage island[J]. Int J Oral Maxillofac Surg, 2017, 46(7): 861-866.
18 陈宇翔, 黄群, 张武阳, 等. Sonic hedgehog参与人胰岛素样生长因子-1信号通路促使下颌骨髁突过度生长的实验研究[J]. 口腔医学研究, 2018, 34(8): 866-869.
18 CHEN Y X, HUANG Q, ZHANG W Y, et al. Animal experiment on cooperation between Shh and IGF-1 in promoting mandibular cartilage overgrowth[J]. Journal of Oral Science Research, 2018, 34 (8): 866-869.
19 LI X H, LIANG W N, YE H Z, et al. Overexpression of Shox2 leads to congenital dysplasia of the temporomandibular joint in mice[J]. Int J Mol Sci, 2014, 15(8): 13135-13150.
20 SUN L, ZHAO J, WANG H, et al. Mechanical stress promotes matrix synthesis of mandibular condylar cartilage via the RKIP-ERK pathway[J]. J Mol Histol, 2017, 48(5/6): 437-446.
21 MARTíN A E, DEL R PANI M, HOLGADO N R, et al. Facial development disorders due to inhibition to endochondral ossification of mandibular condyle process caused by malnutrition[J]. Angle Orthod, 2014, 84(3): 473-478.
22 BI R Y, LI Q L, LI H H, et al. Divergent chondro/osteogenic transduction laws of fibrocartilage stem cell drive temporomandibular joint osteoarthritis in growing mice[J]. Int J Oral Sci, 2023, 15(1): 36.
23 NATHAN J, RUSCITTO A, PYLAWKA S, et al. Fibrocartilage stem cells engraft and self-organize into vascularized bone[J]. J Dent Res, 2018, 97(3): 329-337.
24 EMBREE M C, CHEN M, PYLAWKA S, et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury[J]. Nat Commun, 2016, 7: 13073.
25 RUSCITTO A, CHEN P, TOSA I, et al. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity[J]. Cell Stem Cell, 2023, 30(9): 1179-1198.e7.
26 RUSCITTO A, SCARPA V, MOREL M, et al. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis[J]. J Dent Res, 2020, 99(10): 1174-1181.
27 BI R, CHEN K, WANG Y, et al. Regulating fibrocartilage stem cells via TNF-α/NF-κB in TMJ osteoarthritis[J]. J Dent Res, 2022, 101(3): 312-322.
28 BI R Y, LUO X T, LI Q L, et al. Igf1 regulates fibrocartilage stem cells, cartilage growth, and homeostasis in the temporomandibular joint of mice[J]. J Bone Miner Res, 2023, 38(4): 556-567.
29 JOSHI A S, HATCH N E, HAYAMI T, et al. IGF-1 TMJ injections enhance mandibular growth and bone quality in juvenile rats[J]. Orthod Craniofac Res, 2022, 25(2): 183-191.
30 WENG Y, LIU Y, DU H, et al. Glycosylation of DMP1 is essential for chondrogenesis of condylar cartilage[J]. J Dent Res, 2017, 96(13): 1535-1545.
31 KURIO N, SAUNDERS C, BECHTOLD T E, et al. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage[J]. Matrix Biol, 2018, 67: 15-31.
32 YU S L, TANG Q M, XIE M R, et al. Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway[J]. Cell Prolif, 2020, 53(1): e12727.
33 LIAO L F, ZHANG S X, ZHOU G Q, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis[J]. J Cell Physiol, 2019, 234(4): 3436-3444.
34 GE C, MOHAMED F, BINRAYES A, et al. Selective role of discoidin domain receptor 2 in murine temporomandibular joint development and aging[J]. J Dent Res, 2018, 97(3): 321-328.
35 KIM J M, LIN C J, STAVRE Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073.
36 ZHANG J, PI C X, CUI C, et al. PTHrP promotes subchondral bone formation in TMJ-OA[J]. Int J Oral Sci, 2022, 14(1): 37.
37 LEI J, CHEN S, JING J, et al. Inhibiting Hh signaling in Gli1+ osteogenic progenitors alleviates TMJOA[J]. J Dent Res, 2022, 101(6): 664-674.
38 YANG J L, XU Y F, XUE X, et al. MicroRNA-26b regulates BMSC osteogenic differentiation of TMJ subchondral bone through β-catenin in osteoarthritis[J]. Bone, 2022, 162: 116448.
39 JING J, HINTON R J, JING Y, et al. Osterix couples chondrogenesis and osteogenesis in post-natal condylar growth[J]. J Dent Res, 2014, 93(10): 1014-1021.
40 ROGERS-DECOTES A W, PORTO S C, DUPUIS L E, et al. ADAMTS5 is required for normal trabeculated bone development in the mandibular condyle[J]. Osteoarthritis Cartilage, 2021, 29(4): 547-557.
41 OYHANART S R, ESCUDERO N D, MANDALUNIS P M. Effect of alendronate on the mandible and long bones: an experimental study in vivo[J]. Pediatr Res, 2015, 78(6): 618-625.
42 YANG T, ZHANG J, CAO Y, et al. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling[J]. J Dent Res, 2015, 94(6): 803-812.
43 KUANG B, ZENG Z B, QIN Q. Biomechanically stimulated chondrocytes promote osteoclastic bone resorption in the mandibular condyle[J]. Arch Oral Biol, 2019, 98: 248-257.
44 TIAN Y H, CHEN J B, YAN X, et al. Overloaded orthopedic force induces condylar subchondral bone absorption by stimulating rat mesenchymal stem cells differentiating into osteoclasts via mTOR-regulated RANKL/OPG secretion in osteoblasts[J]. Stem Cells Dev, 2021, 30(1): 29-38.
45 FENG S Y, LEI J, LI Y X, et al. Increased joint loading induces subchondral bone loss of the temporomandibular joint via the RANTES-CCRs-Akt2 axis[J]. JCI Insight, 2022, 7(21): e158874.
46 HE L H, XIAO E, DUAN D H, et al. Osteoclast deficiency contributes to temporomandibular joint ankylosed bone mass formation[J]. J Dent Res, 2015, 94(10): 1392-1400.
47 TANG Y, HONG C, CAI Y, et al. HIF-1α mediates osteoclast-induced mandibular condyle growth via AMPK signaling[J]. J Dent Res, 2020, 99(12): 1377-1386.
48 CHEN Y, KE J, LONG X, et al. Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation[J]. Osteoarthritis Cartilage, 2012, 20(4): 279-287.
49 CAO P, FENG Y, DENG M, et al. MiR-15b is a key regulator of proliferation and apoptosis of chondrocytes from patients with condylar hyperplasia by targeting IGF1, IGF1R and BCL2[J]. Osteoarthritis Cartilage, 2019, 27(2): 336-346.
50 WEN X, WANG Y X, GU Y. Transferrin promotes chondrogenic differentiation in condylar growth through inducing autophagy via ULK1-ATG16L1 axis[J]. Clin Sci, 2023, 137(18): 1431-1449.
51 BIOSSE DUPLAN M, KOMLA-EBRI D, HEUZé Y, et al. Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible[J]. Hum Mol Genet, 2016, 25(14): 2997-3010.
Outlines

/