1 |
LANGAN S M, IRVINE A D, WEIDINGER S. Atopic dermatitis[J]. Lancet, 2020, 396(10247): 345-360.
|
2 |
STÄNDER S. Atopic dermatitis[J]. N Engl J Med, 2021, 384(12): 1136-1143.
|
3 |
TSAI T F, RAJAGOPALAN M, CHU C Y, et al. Burden of atopic dermatitis in Asia[J]. J Dermatol, 2019, 46(10): 825-834.
|
4 |
NICHOLAS M N, GOODERHAM M J. Atopic dermatitis, depression, and suicidality[J]. J Cutan Med Surg, 2017, 21(3): 237-242.
|
5 |
GUO Y F, LI P, TANG J P, et al. Prevalence of atopic dermatitis in Chinese children aged 1-7 ys[J]. Sci Rep, 2016, 6: 29751.
|
6 |
SROKA-TOMASZEWSKA J, TRZECIAK M. Molecular mechanisms of atopic dermatitis pathogenesis[J]. Int J Mol Sci, 2021, 22(8): 4130.
|
7 |
NAKATSUJI T, CHEN T H, NARALA S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis[J]. Sci Transl Med, 2017, 9(378): eaah4680.
|
8 |
LEYDEN J J, MARPLES R R, KLIGMAN A M. Staphylococcus aureus in the lesions of atopic dermatitis[J]. Br J Dermatol, 1974, 90(5): 525-530.
|
9 |
WILLIAMS M R, NAKATSUJI T, GALLO R L. Staphylococcus aureus: master manipulator of the skin[J]. Cell Host Microbe, 2017, 22(5): 579-581.
|
10 |
NATH S, KUMARI N, BANDYOPADHYAY D, et al. Dysbiotic lesional microbiome with filaggrin missense variants associate with atopic dermatitis in India[J]. Front Cell Infect Microbiol, 2020, 10: 570423.
|
11 |
CLAUSEN M L, AGNER T, LILJE B, et al. Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis[J]. JAMA Dermatol, 2018, 154(3): 293-300.
|
12 |
NEDOSZYTKO B, RESZKA E, GUTOWSKA-OWSIAK D, et al. Genetic and epigenetic aspects of atopic dermatitis[J]. Int J Mol Sci, 2020, 21(18): 6484.
|
13 |
MARTIN M J, ESTRAVÍS M, GARCÍA-SÁNCHEZ A, et al. Genetics and epigenetics of atopic dermatitis: an updated systematic review[J]. Genes, 2020, 11(4): 442.
|
14 |
DI DOMENICO E G, CAVALLO I, BORDIGNON V, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis[J]. Sci Rep, 2018, 8(1): 9573.
|
15 |
SUAINI N H A, TAN C P T, LOO E X L, et al. Global differences in atopic dermatitis[J]. Pediatr Allergy Immunol, 2021, 32(1): 23-33.
|
16 |
DAINICHI T, KITOH A, OTSUKA A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis[J]. Nat Immunol, 2018, 19(12): 1286-1298.
|
17 |
FYHRQUIST N, MUIRHEAD G, PRAST-NIELSEN S, et al. Microbe-host interplay in atopic dermatitis and psoriasis[J]. Nat Commun, 2019, 10(1): 4703.
|
18 |
CUNDELL A M. Microbial ecology of the human skin[J]. Microb Ecol, 2018, 76(1): 113-120.
|
19 |
TAUBER M, BALICA S, HSU C Y, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis[J]. J Allergy Clin Immunol, 2016, 137(4): 1272-1274.e3.
|
20 |
JEON J, PARK S C, HER J, et al. Comparative lipidomic profiling of the human commensal bacterium Propionibacterium acnes and its extracellular vesicles[J]. RSC Adv, 2018, 8(27): 15241-15247.
|
21 |
GALLI E, FORTINA A B, RICCI G, et al. Narrative review on the management of moderate-severe atopic dermatitis in pediatric age of the Italian Society of Pediatric Allergology and Immunology (SIAIP), of the Italian Society of Pediatric Dermatology (SIDerP) and of the Italian Society of Pediatrics (SIP)[J]. Ital J Pediatr, 2022, 48(1): 95.
|
22 |
KIM D W, PARK J Y, PARK K D, et al. Are there predominant strains and toxins of Staphylococcus aureus in atopic dermatitis patients? Genotypic characterization and toxin determination of S. aureus isolated in adolescent and adult patients with atopic dermatitis[J]. J Dermatol, 2009, 36(2): 75-81.
|
23 |
CHU C Y. Targeting the cutaneous microbiota in atopic dermatitis: 'A new hope' or 'attack of the CoNS'?[J]. Clin Transl Med, 2022, 12(5): e865.
|
24 |
CLAUSEN M L, EDSLEV S M, ANDERSEN P S, et al. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations[J]. Br J Dermatol, 2017, 177(5): 1394-1400.
|
25 |
HARKINS C P, PETTIGREW K A, ORAVCOVÁ K, et al. The microevolution and epidemiology of Staphylococcus aureus colonization during atopic eczema disease flare[J]. J Invest Dermatol, 2018, 138(2): 336-343.
|
26 |
LEE J H, KIM Y G, LEE J. Inhibition of Staphylococcus aureus biofilm formation and virulence factor production by petroselinic acid and other unsaturated C18 fatty acids[J]. Microbiol Spectr, 2022, 10(3): e0133022.
|
27 |
CHUA W, POH S E, LI H. Secretory proteases of the human skin microbiome[J]. Infect Immun, 2022, 90(1): e0039721.
|
28 |
ABDURRAHMAN G, SCHMIEDEKE F, BACHERT C, et al. Allergy-A new role for T cell superantigens of Staphylococcus aureus? [J]. Toxins, 2020, 12(3): 176.
|
29 |
SOMERVILLE T F, SHANKAR J, ALDWINCKLE S, et al. Recurrent microbial keratitis and endogenous site Staphylococcus aureus colonisation[J]. Sci Rep, 2020, 10(1): 18559.
|
30 |
DATSI A, STEINHOFF M, AHMAD F, et al. Interleukin-31: the “itchy” cytokine in inflammation and therapy[J]. Allergy, 2021, 76(10): 2982-2997.
|
31 |
ALEXANDER H, PALLER A S, TRAIDL-HOFFMANN C, et al. The role of bacterial skin infections in atopic dermatitis: expert statement and review from the International Eczema Council Skin Infection Group[J]. Br J Dermatol, 2020, 182(6): 1331-1342.
|
32 |
NAKAMURA Y, OSCHERWITZ J, CEASE K B, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells[J]. Nature, 2013, 503(7476): 397-401.
|
33 |
SYED A K, REED T J, CLARK K L, et al. Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation[J]. Infect Immun, 2015, 83(9): 3428-3437.
|
34 |
KEMBER M, GRANDY S, RAUDONIS R, et al. Non-canonical host intracellular niche links to new antimicrobial resistance mechanism[J]. Pathogens, 2022, 11(2): 220.
|
35 |
BECKER K, HEILMANN C, PETERS G. Coagulase-negative staphylococci[J]. Clin Microbiol Rev, 2014, 27(4): 870-926.
|
36 |
LIU Y, LIU Y Z, DU Z X, et al. Skin microbiota analysis-inspired development of novel anti-infectives[J]. Microbiome, 2020, 8(1): 85.
|
37 |
ZHENG Y, HUNT R L, VILLARUZ A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host Microbe, 2022, 30(3): 301-313.e9.
|
38 |
LIU Y, LIU Q, ZHAO L, et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1[J]. J Extracell Vesicles, 2022, 11(4): e12212.
|
39 |
ZIPPERER A, KONNERTH M C, LAUX C, et al. Human commensals producing a novel antibiotic impair pathogen colonization[J]. Nature, 2016, 535(7613): 511-516.
|
40 |
CAU L, WILLIAMS M R, BUTCHER A M, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis[J]. J Allergy Clin Immunol, 2021, 147(3): 955-966.e16.
|
41 |
VLACHOS C, HENNING M A S, GAITANIS G, et al. Critical synthesis of available data in Malassezia folliculitis and a systematic review of treatments[J]. J Eur Acad Dermatol Venereol, 2020, 34(8): 1672-1683.
|
42 |
ASADOLLAHI P, FARAHANI N N, MIRZAII M, et al. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: a review[J]. Front Microbiol, 2018, 9: 163.
|
43 |
YU J L, LUO Y, ZHU Z L, et al. A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor[J]. J Allergy Clin Immunol, 2019, 143(6): 2108-2119.e12.
|
44 |
NAKATSUJI T, GALLO R L, SHAFIQ F, et al. Use of autologous bacteriotherapy to treat Staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial[J]. JAMA Dermatol, 2021, 157(8): 978-982.
|
45 |
NAKATSUJI T, HATA T R, TONG Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial[J]. Nat Med, 2021, 27(4): 700-709.
|
46 |
MYLES I A, CASTILLO C R, BARBIAN K D, et al. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair[J]. Sci Transl Med, 2020, 12(560): eaaz8631.
|