1 |
WROBEL C, ZAFEIRIOU M P, MOSER T. Understanding and treating paediatric hearing impairment[J]. EBioMedicine, 2021, 63: 103171.
|
2 |
GARCIA A, HALEEM A, POE S, et al. Auditory brainstem implant outcomes in tumor andNontumor patients: a systematic review[J]. Otolaryngol Head Neck Surg, 2024, 170(6): 1648-1658.
|
3 |
WONG K, KOZIN E D, KANUMURI V V, et al. Auditory brainstem implants: recent progress and future perspectives[J]. Front Neurosci, 2019, 13: 10.
|
4 |
VAN DER STRAATEN T F K, NETTEN A P, BOERMANS P P B M, et al. Pediatric auditory brainstem implant users compared with cochlear implant users with additional disabilities[J]. and, 2019, 40(7): 936-945.
|
5 |
GÄRTNER L, LENARZ T, BÜCHNER A. Measurements of the local evoked potential from the cochlear nucleus in patients with an auditory brainstem implant and its implication to auditory perception and audio processor programming[J]. PLoS One, 2021, 16(4): e0249535.
|
6 |
MCINTURFF S, COEN F V, HIGHT A E, et al. Comparison of responses to DCN vs. VCN stimulation in a mouse model of the auditory brainstem implant (ABI)[J]. J Assoc Res Otolaryngol, 2022, 23(3): 391-412.
|
7 |
VACHICOURAS N, TARABICHI O, KANUMURI V V, et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants[J]. Sci Transl Med, 2019, 11(514): eaax9487.
|
8 |
AZADPOUR M, SHAPIRO W H, ROLAND J T Jr, et al. Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users[J]. Hear Res, 2021, 401: 108163.
|
9 |
MCKAY C M, AZADPOUR M, JAYEWARDENE-ASTON D, et al. Electrode selection and speech understanding in patients with auditory brainstem implants[J]. Ear Hear, 2015, 36(4): 454-463.
|
10 |
GOEHRING T, ARCHER-BOYD A W, ARENBERG J G, et al. The effect of increased channel interaction on speech perception with cochlear implants[J]. Sci Rep, 2021, 11(1): 10383.
|
11 |
CREW J D, GALVIN J J 3rd, FU Q J. Channel interaction limits melodic pitch perception in simulated cochlear implants[J]. J Acoust Soc Am, 2012, 132(5): EL429-EL435.
|
12 |
LAMPING W, DEEKS J M, MAROZEAU J, et al. The effect of phantom stimulation and pseudomonophasic pulse shapes on pitch perception by cochlear implant listeners[J]. J Assoc Res Otolaryngol, 2020, 21(6): 511-526.
|
13 |
PARTOUCHE E, ADENIS V, STAHL P, et al. What is the benefit of ramped pulse shapes for activating auditory cortex neurons? an electrophysiological study in an animal model of cochlear implant[J]. Brain Sci, 2023, 13(2): 250.
|
14 |
SHANNON R V, ZENG F G, KAMATH V, et al. Speech recognition with primarily temporal cues[J]. Science, 1995, 270(5234): 303-304.
|
15 |
KONG F H, ZHOU H L, MO Y F, et al. Comparable encoding, comparable perceptual pattern: acoustic and electric hearing[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2326-2337.
|
16 |
杨一威, 徐月晋, 缪吉昌, 等. 人工耳蜗的膜电位积分放电刺激方案及其数字信号处理[J]. 南方医科大学学报, 2012, 32(10): 1435-1439.
|
|
YANG Y W, XU Y J, MIU J C, et al. Digital signal processing of a novel neuron discharge model stimulation strategy for cochlear implants [J]. Journal of Southern Medical University, 2012, 32(10): 1435-1439.
|
17 |
孟强, 田岚, 徐东平, 等. 全相位带通滤波器用于听觉重建的参数优化研究[J]. 复旦学报(自然科学版), 2020, 59(5): 551-557.
|
|
MENG Q, TIAN L, XU D P, et al. Research on parameter optimization of all-phase band-pass filter for auditory reconstruction [J]. Journal of Fudan University(Natural Science), 2020, 59(5): 551-557.
|
18 |
KUCHTA J, OTTO S R, SHANNON R V, et al. The multichannel auditory brainstem implant: how many electrodes make sense?[J]. J Neurosurg, 2004, 100(1): 16-23.
|
19 |
NELSON D A, DONALDSON G S, KREFT H. Forward-masked spatial tuning curves in cochlear implant users[J]. J Acoust Soc Am, 2008, 123(3):1522-1543.
|
20 |
CHEN X Q, YOU Y Y, YANG J, et al. Effects of nonlinear frequency compression on Mandarin speech and sound-quality perception in hearing-aid users[J]. Int J Audiol, 2020, 59(7): 524-533.
|
21 |
YANG J, QIAN J Y, CHEN X Q, et al. Effects of nonlinear frequency compression on the acoustic properties and recognition of speech sounds in Mandarin Chinese[J]. J Acoust Soc Am, 2018, 143(3): 1578.
|
22 |
QI S, CHEN X Q, YANG J, et al. Effects of adaptive non-linear frequency compression in hearing aids on mandarin speech and sound-quality perception[J]. Front Neurosci, 2021, 15: 722970.
|
23 |
FAYAD J N, OTTO S R, SHANNON R V, et al. Cochlear and brainstem auditory prostheses "neural interface for hearing restoration: cochlear and brain stem implants"[J]. Proc IEEE, 2008, 96(7): 1085-1095.
|
24 |
吴皓, 贾欢. 关注人工听觉脑干植入[J]. 中华医学杂志, 2021, 101(2): 92-96.
|
|
WU H, JIA H. Auditory brainstem implantation: current status and prospects[J]. National Medical Journal of China, 2021, 101(2): 92-96.
|
25 |
吴皓. 人工听觉植入最新进展[J]. 中华耳鼻咽喉头颈外科杂志, 2023, 58(Suppl): 13-20.
|
|
WU H. The latest progress in artificial auditory implantation[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2023, 58(Suppl): 13-20.
|
26 |
LI X, NIE K B, IMENNOV N S, et al. Improved perception of music with a harmonic based algorithm for cochlear implants[J]. IEEE Trans Neural Syst Rehabil Eng, 2013, 21(4): 684-694.
|
27 |
贾欢, 陈颖, 张治华, 等. 人工听觉脑干植入在先天性耳聋低龄儿童中的应用探索[J]. 上海交通大学学报(医学版), 2020, 40(10): 1324-1329.
|
|
JIA H, CHEN Y, ZHANG Z H, et al. Auditory brainstem implantation in young children with congenital deafness: a case report[J]. Journal of Shanghai Jiaotong University (Medical Science), 2020, 40(10): 1324-1329.
|
28 |
SADDLER M R, GONZALEZ R, MCDERMOTT J H. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception[J]. Nat Commun, 2021, 12(1): 7278.
|
29 |
BINGABR M, ESPINOZA-VARAS B, LOIZOU P C. Simulating the effect of spread of excitation in cochlear implants[J]. Hear Res, 2008, 241(1/2): 73-79.
|
30 |
SCHMID G, UBERBACHER R, SAMARAS T, et al. High-resolution numerical model of the middle and inner ear for a detailed analysis of radio frequency absorption[J]. Phys Med Biol, 2007, 52(7): 1771-1781.
|
31 |
D'ALESSANDRO S, HANDLER M, SABA R, et al. Computer simulation of the electrical stimulation of the human vestibular system: effects of the reactive component of impedance on voltage waveform and nerve selectivity[J]. J Assoc Res Otolaryngol, 2022, 23(6): 815-833.
|
32 |
周祥, 潘金锡, 张钦杰, 等. 听觉脑干植入豚鼠模型构建的标准化步骤及评价[J]. 上海交通大学学报(医学版), 2022, 42(5): 583-590.
|
|
ZHOU X, PAN J X, ZHANG Q J, et al. Establishment and evaluation of standardized steps for building a guinea pig model of auditory brainstem implantation[J]. Journal of Shanghai Jiaotong University(Medical Science), 2022, 42(5): 583-590.
|