| [1] |
XU T T, CHEN P Q, WANG J X, et al. Introduction to biomedical engineering in stroke diagnosis and treatment[J]. Stroke, 2022, 53(11): e487-e489.
|
| [2] |
JIANG Y X, WANG R Q, WANG C, et al. Brain microenvironment responsive and pro-angiogenic extracellular vesicle-hydrogel for promoting neurobehavioral recovery in type 2 diabetic mice after stroke[J]. Adv Healthc Mater, 2022, 11(22): e2201150.
|
| [3] |
HILKENS N A, CASOLLA B, LEUNG T W, et al. Stroke[J]. Lancet, 2024, 403(10446): 2820-2836.
|
| [4] |
DELONG J H, OHASHI S N, O'CONNOR K C, et al. Inflammatory responses after ischemic stroke[J]. Semin Immunopathol, 2022, 44(5): 625-648.
|
| [5] |
MENDELSON S J, PRABHAKARAN S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098.
|
| [6] |
WASSÉLIUS J, ARNBERG F, VON EULER M, et al. Endovascular thrombectomy for acute ischemic stroke[J]. J Intern Med, 2022, 291(3): 303-316.
|
| [7] |
JOLUGBO P, ARIËNS R A S. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke[J]. Stroke, 2021, 52(3): 1131-1142.
|
| [8] |
DORDOE C, HUANG W T, BWALYA C, et al. The role of microglial activation on ischemic stroke: modulation by fibroblast growth factors[J]. Cytokine Growth Factor Rev, 2023, 74: 122-133.
|
| [9] |
MO Y, XU W L, FU K J, et al. The dual function of microglial polarization and its treatment targets in ischemic stroke[J]. Front Neurol, 2022, 13: 921705.
|
| [10] |
QIN C, ZHOU L Q, MA X T, et al. Dual functions of microglia in ischemic stroke[J]. Neurosci Bull, 2019, 35(5): 921-933.
|
| [11] |
MA Y Y, WANG J X, WANG Y T, et al. The biphasic function of microglia in ischemic stroke[J]. Prog Neurobiol, 2017, 157: 247-272.
|
| [12] |
LIU X, LIU J, ZHAO S, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia[J]. Stroke, 2016, 47(2): 498-504.
|
| [13] |
JIANG X, YI S, LIU Q, et al. The secretome of microglia induced by IL-4 of IFN-γ differently regulate proliferation, differentiation and survival of adult neural stem/progenitor cell by targeting the PI3K-Akt pathway[J]. Cytotechnology, 2022, 74(3): 407-420.
|
| [14] |
XU J, CHEN Z Q, YU F, et al. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice[J]. Proc Natl Acad Sci U S A, 2020, 117(51): 32679-32690.
|
| [15] |
SONG G N, ZHAO M, CHEN H M, et al. The role of nanomaterials in stroke treatment: targeting oxidative stress[J]. Oxid Med Cell Longev, 2021, 2021: 8857486.
|
| [16] |
GHUMAN H, GERWIG M, NICHOLLS F J, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume[J]. Acta Biomater, 2017, 63: 50-63.
|
| [17] |
ROTARU-ZĂVĂLEANU A D, DINESCU V C, ALDEA M, et al. Hydrogel-based therapies for ischemic and hemorrhagic stroke: a comprehensive review[J]. Gels, 2024, 10(7): 476.
|
| [18] |
LI X, HAN Z H, WANG T Y, et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke[J]. Biomaterials, 2022, 291: 121904.
|
| [19] |
BAI Y, HAN B, ZHANG Y, et al. Advancements in hydrogel application for ischemic stroke therapy[J]. Gels, 2022, 8(12): 777.
|
| [20] |
CAI L, GONG Q, QI L, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NF-κB/NLRP3 pathway[J]. Cell Commun Signal, 2022, 20(1): 56.
|
| [21] |
LI G Q, ZHANG R L, CHEN K Y, et al. Zinc sulfide nanoparticles serve as gas slow-release bioreactors for H2S therapy of ischemic stroke[J]. Biomaterials, 2025, 315: 12291.
|
| [22] |
LALANI J, PATIL S, KOLATE A, et al. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management[J]. AAPS PharmSciTech, 2015, 16(2): 413-427.
|
| [23] |
SU Y, ZHANG B L, SUN R W, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418.
|
| [24] |
STOJILJKOVIĆ A, KUEHNI-BOGHENBOR K, GASCHEN V, et al. High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture[J]. Nanoscale, 2016, 8(37): 16650-16661.
|
| [25] |
PEVIANI M, CAPASSO PALMIERO U, CECERE F, et al. Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release[J]. Biomaterials, 2019, 209: 25-40.
|
| [26] |
LUO L X, YANG J, OH Y, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis[J]. J Control Release, 2019, 296: 68-80.
|
| [27] |
BENHABBOUR S R, SHEARDOWN H, ADRONOV A. Cell adhesion and proliferation on hydrophilic dendritically modified surfaces[J]. Biomaterials, 2008, 29(31): 4177-4186.
|
| [28] |
FERNÁNDEZ-ALBARRAL J A, RAMÍREZ A I, DE HOZ R, et al. Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma[J]. Int J Mol Sci, 2019, 20(17): 4110.
|
| [29] |
GORIELY A, GEERS M G, HOLZAPFEL G A, et al. Mechanics of the brain: perspectives, challenges, and opportunities[J]. Biomech Model Mechanobiol, 2015, 14(5): 931-965.
|
| [30] |
BLASCHKE S J, DEMIR S, KÖNIG A, et al. Substrate elasticity exerts functional effects on primary microglia[J]. Front Cell Neurosci, 2020, 14: 590500.
|
| [31] |
MOSHAYEDI P, NG G, KWOK J C, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system[J]. Biomaterials, 2014, 35(13): 3919-3925.
|
| [32] |
KHODOUN M, LEWIS C C, YANG J Q, et al. Differences in expression, affinity, and function of soluble (s)IL-4Rα and sIL-13Rα2 suggest opposite effects on allergic responses[J]. J Immunol, 2007, 179(10): 6429-6438.
|
| [33] |
LIU H, HE Y, LU C, et al. Efficacy of pulmonary transplantation of engineered macrophages secreting IL-4 on acute lung injury in C57BL/6J mice[J]. Cell Death Dis, 2019, 10(9): 664.
|
| [34] |
WANG J, WANG L L, WU Q J, et al. Interleukin-4 modulates neuroinflammation by inducing phenotypic transformation of microglia following subarachnoid hemorrhage[J]. Inflammation, 2024, 47(1): 390-403.
|
| [35] |
HE Y, GAO Y, ZHANG Q, et al. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH[J]. Neuroscience, 2020, 437: 161-171.
|
| [36] |
SMALL D L, BUCHAN A M. Animal models[J]. Br Med Bull, 2000, 56(2): 307-317.
|