Journal of Shanghai Jiao Tong University (Medical Science) >
Research progress in cue-reactivity of addictive substance and its neural mechanism
Received date: 2019-12-21
Online published: 2021-04-06
Supported by
National Nature Science Foundation of China(81771436);Shanghai 'Top Priority' Key Discipline(2017ZZ02021);Program of Shanghai Academic Research Leader(17XD1403300);Shanghai Municipal Health System Excellent Talents Training Program(2017YQ013)
Cue-reactivity of addictive substance is a kind of evoked physiological, behavioural and neural responses when an individual is exposed to cues previously associated with addictive substance taking. Cue-reactivity is one of the main features of addiction. It can evoke craving and plays an important role in relapse. However, the neuromechanism is still unknown. The review summarizes recent research progress in the neuromechanism of cue-reactivity and the condition of clinical therapies based on cue-reactivity, which helps deeply understand the development of addiction and set effective clinical intervention strategy.
Ping-yuan YANG , Hai-feng JIANG , Min ZHAO . Research progress in cue-reactivity of addictive substance and its neural mechanism[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021 , 41(3) : 376 -379 . DOI: 10.3969/j.issn.1674-8115.2021.03.016
1 | Detar DT. Understanding the disease of addiction[J]. Prim Care, 2011, 38(1): 1-7. |
2 | Zorick T, Sugar CA, Hellemann G, et al. Poor response to sertraline in methamphetamine dependence is associated with sustained craving for methamphetamine[J]. Drug Alcohol Depend, 2011, 118(2/3): 500-503. |
3 | Lee NK, Pohlman S, Baker A, et al. It's the thought that counts: craving metacognitions and their role in abstinence from methamphetamine use[J]. J Subst Abuse Treat, 2010, 38(3): 245-250. |
4 | Hartz DT, Frederick-Osborne SL, Galloway GP. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis[J]. Drug Alcohol Depend, 2001, 63(3): 269-276. |
5 | Wikler A. Recent progress in research on the neurophysiologic basis of morphine addiction[J]. Am J Psychiatry, 1948, 105(5): 329-338. |
6 | Stewart J, de Wit H, Eikelboom R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants[J]. Psychol Rev, 1984, 91(2): 251-268. |
7 | Siegel S. Evidence from rats that morphine tolerance is a learned response[J]. J Comp Physiol Psychol, 1975, 89(5): 498-506. |
8 | Stewart JL, May AC. Electrophysiology for addiction medicine: from methodology to conceptualization of reward deficits[J]. Prog Brain Res, 2016, 224: 67-84. |
9 | Littel M, Franken IH. Implicit and explicit selective attention to smoking cues in smokers indexed by brain potentials[J]. J Psychopharmacol, 2011, 25(4): 503-513. |
10 | Lubman DI, Allen NB, Peters LA, et al. Electrophysiological evidence of the motivational salience of drug cues in opiate addiction[J]. Psychol Med, 2007, 37(8): 1203-1209. |
11 | Henry EA, Kaye JT, Bryan AD, et al. Cannabis cue reactivity and craving among never, infrequent and heavy Cannabis users[J]. Neuropsychopharmacology, 2014, 39(5): 1214-1221. |
12 | Bartholow BD, Lust SA, Tragesser SL. Specificity of P3 event-related potential reactivity to alcohol cues in individuals low in alcohol sensitivity[J]. Psychol Addict Behav, 2010, 24(2): 220-228. |
13 | Littel M, Franken IH. The effects of prolonged abstinence on the processing of smoking cues: an ERP study among smokers, ex-smokers and never-smokers[J]. J Psychopharmacol, 2007, 21(8): 873-882. |
14 | Heinze M, W?lfling K, Grüsser SM. Cue-induced auditory evoked potentials in alcoholism[J]. Clin Neurophysiol, 2007, 118(4): 856-862. |
15 | Dunning JP, Parvaz MA, Hajcak G, et al. Motivated attention to cocaine and emotional cues in abstinent and current cocaine users: an ERP study[J]. Eur J Neurosci, 2011, 33(9): 1716-1723. |
16 | Robinson JD, Versace F, Engelmann JM, et al. The motivational salience of cigarette-related stimuli among former, never, and current smokers[J]. Exp Clin Psychopharmacol, 2015, 23(1): 37-48. |
17 | Versace F, Lam CY, Engelmann JM, et al. Beyond cue reactivity: blunted brain responses to pleasant stimuli predict long-term smoking abstinence[J]. Addict Biol, 2012, 17(6): 991-1000. |
18 | W?lfling K, Flor H, Grüsser SM. Psychophysiological responses to drug-associated stimuli in chronic heavy Cannabis use[J]. Eur J Neurosci, 2008, 27(4): 976-983. |
19 | Morrison SE, Saez A, Lau B, et al. Different time courses for learning-related changes in amygdala and orbitofrontal cortex[J]. Neuron, 2011, 71(6): 1127-1140. |
20 | Kamarajan C, Rangaswamy M, Manz N, et al. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence[J]. Hum Brain Mapp, 2012, 33(5): 1019-1039. |
21 | Jones BT, Bruce G, Livingstone S, et al. Alcohol-related attentional bias in problem drinkers with the flicker change blindness paradigm[J]. Psychol Addict Behav, 2006, 20(2): 171-177. |
22 | McCane AM, Ahn S, Rubchinsky LL, et al. COMT inhibition alters cue-evoked oscillatory dynamics during alcohol drinking in the rat[J]. eNeuro, 2018, 5(5): ENEURO.0326-18.2018. |
23 | Moeller FG, Dougherty DM, Barratt ES, et al. The impact of impulsivity on cocaine use and retention in treatment[J]. J Subst Abuse Treat, 2001, 21(4): 193-198. |
24 | Goldstein RZ, Leskovjan AC, Hoff AL, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex[J]. Neuropsychologia, 2004, 42(11): 1447-1458. |
25 | Kübler A, Murphy K, Garavan H. Cocaine dependence and attention switching within and between verbal and visuospatial working memory[J]. Eur J Neurosci, 2005, 21(7): 1984-1992. |
26 | Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology[J]. Prog Neurobiol, 2004, 72(5): 341-372. |
27 | Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex[J]. Trends Cogn Sci, 2000, 4(6): 215-222. |
28 | Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking[J]. Brain Res Brain Res Rev, 1999, 31(1): 6-41. |
29 | Bauernfeind AL, De Sousa AA, Avasthi T, et al. A volumetric comparison of the insular cortex and its subregions in primates[J]. J Hum Evol, 2013, 64(4): 263-279. |
30 | Seo D, Lacadie CM, Tuit K, et al. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk[J]. JAMA Psychiatry, 2013, 70(7): 727-739. |
31 | Volkow ND, Fowler JS, Wang GJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers[J]. Synapse, 1993, 14(2): 169-177. |
32 | Hanlon CA, Beveridge TJ, Porrino LJ. Recovering from cocaine: insights from clinical and preclinical investigations[J]. Neurosci Biobehav Rev, 2013, 37(9 Pt A): 2037-2046. |
33 | MacNiven KH, Jensen ELS, Borg N, et al. Association of neural responses to drug cues with subsequent relapse to stimulant use[J]. JAMA Netw Open, 2018, 1(8): e186466. |
34 | McHugh MJ, Demers CH, Braud J, et al. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk[J]. Am J Drug Alcohol Abuse, 2013, 39(6): 424-432. |
35 | Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review[J]. Addict Biol, 2013, 18(1): 121-133. |
36 | Courtney KE, Schacht JP, Hutchison K, et al. Neural substrates of cue reactivity: association with treatment outcomes and relapse[J]. Addict Biol, 2016, 21(1): 3-22. |
37 | Volkow ND, Wang GJ, Telang F, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction[J]. J Neurosci, 2006, 26(24): 6583-6588. |
38 | Wong DF, Kuwabara H, Schretlen DJ, et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving[J]. Neuropsychopharmacology, 2006, 31(12): 2716-2727. |
39 | Szumlinski KK, Wroten MG, Miller BW, et al. Cocaine self-administration elevates GluN2B within dmPFC mediating heightened cue-elicited operant responding[J]. J Drug Abuse, 2016, 2(2): 22. |
40 | Farokhnia M, Deschaine SL, Sadighi A, et al. A deeper insight into how GABA-B receptor agonism via baclofen may affect alcohol seeking and consumption: lessons learned from a human laboratory investigation[J]. Mol Psychiatry, 2021, 26(2): 545-555. |
41 | Logge WB, Morris RW, Baillie AJ, et al. Baclofen attenuates fMRI alcohol cue reactivity in treatment-seeking alcohol dependent individuals[J]. Psychopharmacology (Berl), 2019. DOI:10.1007/s00213-019-05192-5. |
42 | Mann K, Vollst?dt-Klein S, Reinhard I, et al. Predicting naltrexone response in alcohol-dependent patients: the contribution of functional magnetic resonance imaging[J]. Alcohol Clin Exp Res, 2014, 38(11): 2754-2762. |
43 | Feduccia AA, Simms JA, Mill D, et al. Varenicline decreases ethanol intake and increases dopamine release via neuronal nicotinic acetylcholine receptors in the nucleus accumbens[J]. Br J Pharmacol, 2014, 171(14): 3420-3431. |
44 | Langleben DD, Ruparel K, Elman I, et al. Acute effect of methadone maintenance dose on brain fMRI response to heroin-related cues[J]. Am J Psychiatry, 2008, 165(3): 390-394. |
45 | Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications[J]. Nat Rev Neurosci, 2011, 12(11): 652-669. |
46 | Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential[J]. Neurology, 2007, 68(7): 484-488. |
47 | Bellamoli E, Manganotti P, Schwartz RP, et al. rTMS in the treatment of drug addiction: an update about human studies[J]. Behav Neurol, 2014, 2014: 815215. |
48 | Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction[J]. Ann N Y Acad Sci, 2014, 1327(1): 79-93. |
/
〈 |
|
〉 |