Journal of Shanghai Jiao Tong University (Medical Science) >
Research progress in epigenetics in methamphetamine use and addiction
Online published: 2021-08-13
Supported by
National Nature Science Foundation of China(81771436);Project of Shanghai Municipal Health and Family Planning Commission(2017ZZ02021)
Methamphetamine is a central nerve psychostimulant with strong addictive effects and neurotoxicity. However, the mechanism of methamphetamine addiction is still unknown. Epigenetics regulates gene expression without influencing DNA sequence and is a research hotspot in recent years. Increasing researches indicate that epigenetics may participate in methamphetamine-induced brain structure and function alterations. This may provide new insights for exploring the pathogenesis of methamphetamine addiction. This article reviews the advances of epigenetic researches related to methamphetamine use and addiction.
Ying-jie CHENG , Qian-qian SUN , Min ZHAO . Research progress in epigenetics in methamphetamine use and addiction[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021 , 41(8) : 1094 -1098 . DOI: 10.3969/j.issn.1674-8115.2021.08.016
1 | Chan B, Freeman M, Kondo K, et al. Pharmacotherapy for methamphetamine/amphetamine use disorder: a systematic review and meta-analysis [J]. Addiction, 2019, 114(12):2122-2136. |
2 | Volkow ND, Morales M. The brain on drugs: from reward to addiction[J]. Cell, 2015, 162(4): 712-725. |
3 | Waddington CH. The epigenotype [J]. Int J Epidemiol, 2012, 41(1): 10-13. |
4 | Nebbioso A, Tambaro FP, Dell'Aversana C, et al. Cancer epigenetics: moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. |
5 | Hwang JY, Aromolaran KA, Zukin RS. The emerging field of epigenetics in neurodegeneration and neuroprotection[J]. Nat Rev Neurosci, 2017, 18(6): 347-361. |
6 | Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction[J]. Curr Opin Neurobiol, 2013, 23(4): 521-528. |
7 | Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705. |
8 | Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. |
9 | Martin TA, Jayanthi S, McCoy MT, et al. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens[J]. PLoS One, 2012, 7(3): e34236. |
10 | Li H, Li F, Wu N, et al. Methamphetamine induces dynamic changes of histone deacetylases in different phases of behavioral sensitization[J]. CNS Neurosci Ther, 2014, 20(9): 874-876. |
11 | Jayanthi S, McCoy MT, Chen B, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms[J]. Biol Psychiatry, 2014, 76(1): 47-56. |
12 | Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents[J]. Epigenetics, 2015, 10(7): 574-580. |
13 | Li JX, Han R, Deng YP, et al. Different effects of valproate on methamphetamine- and cocaine-induced behavioral sensitization in mice[J]. Behav Brain Res, 2005, 161(1): 125-132. |
14 | Coccurello R, Caprioli A, Ghirardi O, et al. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice[J]. Ann N Y Acad Sci, 2007, 1122: 260-275. |
15 | Harkness JH, Hitzemann RJ, Edmunds S, et al. Effects of sodium butyrate on methamphetamine-sensitized locomotor activity[J]. Behav Brain Res, 2013, 239: 139-147. |
16 | Zhu J, Zhao N, Chen Y, et al. Sodium butyrate modulates a methamphetamine-induced conditioned place preference [J]. J Neurosci Res, 2017, 95(4): 1044-1052. |
17 | Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. |
18 | Krasnova IN, Chiflikyan M, Justinova Z, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat[J]. Neurobiol Dis, 2013, 58: 132-143. |
19 | Aguilar-Valles A, Vaissière T, Griggs EM, et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation[J]. Biol Psychiatry, 2014, 76(1): 57-65. |
20 | Ikegami D, Narita M, Imai S, et al. Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine [J]. Addict Biol, 2010, 15(3): 358-361. |
21 | González B, Jayanthi S, Gomez N, et al. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82: 1-11. |
22 | Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2): 81-92. |
23 | Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. |
24 | Itzhak Y, Ergui I, Young JI. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring[J]. Mol Psychiatry, 2015, 20(2): 232-239. |
25 | Biagioni F, Ferese R, Limanaqi F, et al. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons[J]. Brain Res, 2019, 1719: 157-175. |
26 | Salehzadeh SA, Mohammadian A, Salimi F. Effect of chronic methamphetamine injection on levels of BDNF mRNA and its CpG island methylation in prefrontal cortex of rats[J]. Asian J Psychiatr, 2020, 48: 101884. |
27 | Fan XY, Yang JY, Dong YX, et al. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the synaptophysin promoter[J]. Addict Biol, 2020, 25(1): e12697. |
28 | Yuka KS, Nishizawa D, Hasegawa J, et al. A single medical marker for diagnosis of methamphetamine addiction: DNA methylation of SHATI/NAT8L promoter sites from patient blood[J]. Curr Pharm Des, 2020, 26(2): 260-264. |
29 | Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain[J]. Brain Res, 2015, 1629: 126-134. |
30 | Jiang W, Li J, Zhang Z, et al. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine[J]. Eur J Pharmacol, 2014, 745: 243-248. |
31 | Lee HJ, Bae EJ, Lee SJ. Extracellular alpha-synuclein: a novel and crucial factor in Lewy body diseases [J]. Nat Rev Neurol, 2014, 10(2): 92-98. |
32 | Callaghan RC, Cunningham JK, Sajeev G, et al. Incidence of Parkinson′s disease among hospital patients with methamphetamine-use disorders[J]. Mov Disord, 2010, 25(14): 2333-2339. |
33 | Qi J, Yang JY, Wang F, et al. Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement[J]. Neuropharmacology, 2009, 56(5): 856-865. |
34 | Jayanthi S, Gonzalez B, McCoy MT, et al. Methamphetamine induces TET1-and TET3-dependent DNA hydroxymethylation of crh and avp genes in the rat nucleus accumbens[J]. Mol Neurobiol, 2018, 55(6): 5154-5166. |
35 | Cadet JL, Brannock C, Krasnova IN, et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence[J]. Mol Psychiatry, 2017, 22(8): 1196-1204. |
36 | Eddy SR. Non-coding RNA genes and the modern RNA world[J]. Nat Rev Genet, 2001, 2(12): 919-929. |
37 | Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94. |
38 | Fu XD. Non-coding RNA: a new frontier in regulatory biology[J]. Natl Sci Rev, 2014, 1(2): 190-204. |
39 | Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465. |
40 | Zhu L, Zhu J, Liu Y, et al. Chronic methamphetamine regulates the expression of microRNAs and putative target genes in the nucleus accumbens of mice[J]. J Neurosci Res, 2015, 93(10): 1600-1610. |
41 | Du HY, Cao DN, Chen Y, et al. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: from controlled drug intake to escalated drug intake[J]. Neurosci Lett, 2016, 611: 21-27. |
42 | Bosch PJ, Benton MC, Macartney-Coxson D, et al. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats[J]. BMC Neurosci, 2015, 16: 43. |
43 | Zhang K, Wang Q, Jing X, et al. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder[J]. Sci Rep, 2016, 6: 35691. |
44 | Sim MS, Soga T, Pandy V, et al. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens[J]. Metab Brain Dis, 2017, 32(6): 1767-1783. |
45 | Li H, Li C, Zhou Y, et al. Expression of microRNAs in the serum exosomes of methamphetamine-dependent rats vs.ketamine-dependent rats[J]. Exp Ther Med, 2018, 15(4): 3369-3375. |
46 | Shi JJ, Cao DN, Liu HF, et al. Dorsolateral striatal miR-134 modulates excessive methamphetamine intake in self-administering rats[J]. Metab Brain Dis, 2019, 34(4): 1029-1041. |
47 | Meng Y, Zhang Y, Tregoubov V, et al. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton[J]. Rev Neurosci, 2003, 14(3): 233-240. |
48 | Du LF, Shen K, Bai Y, et al. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis[J]. Toxicol Lett, 2019, 301: 53-63. |
49 | Zhang Y, Shen K, Bai Y, et al. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: implications for methamphetamine-mediated neurotoxicity[J]. Autophagy, 2016, 12(9): 1538-1559. |
50 | Yu G, Song Y, Xie C, et al. MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: role of the target protein Peli1[J]. Toxicol Appl Pharmacol, 2019, 370: 145-153. |
51 | Zhao Y, Zhang K, Jiang H, et al. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder[J]. J Neuroimmune Pharmacol, 2016, 11(3): 542-548. |
52 | Gu WJ, Zhang C, Zhong Y, et al. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder[J]. Biomed Pharmacother, 2020, 125: 109918. |
53 | Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J]. Genome Res, 2012, 22(9): 1775-1789. |
54 | Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription[J]. BMC Biol, 2013, 11: 59. |
55 | Zhu L, Zhu J, Liu Y, et al. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse[J]. BMC Neurosci, 2015, 16: 18. |
56 | Xiong K, Long L, Zhang X, et al. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro [J]. Toxicol In Vitro, 2017, 44: 1-10. |
57 | Ip JY, Sone M, Nashiki C, et al. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine[J]. Sci Rep, 2016, 6: 27204. |
58 | Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. |
59 | Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction[J]. Neurosci Lett, 2019, 701: 146-153. |
/
〈 |
|
〉 |