Review

Research progress in the relationship between endosomal sorting complexes required for transport and autophagy

  • Yi LI ,
  • Da-wei SUN ,
  • De-rong CUI
Expand
  • Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
CUI De-rong, E-mail: cuishuning118@163.com.

Received date: 2021-05-08

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China(81974284)

Abstract

Autophagy is an intracellular degradation pathway, which can transport a large number of cytoplasmic, damaged organelles and other substrates to lysosomes for degradation to maintain intracellular homeostasis. In the process of autophagy, the integrity of autophagy flow should be ensured. Many factors affect the smooth autophagy flow, including the relationship between endosomal sorting complexes required for transport (ESCRT) and autophagy. ESCRT is mainly responsible for membrane shearing, mediating cell membrane remodeling and division, and plays an important role in the process of endocytosis and cytokinesis. In recent years, many studies have shown that ESCRT mutants generally present an accumulation of autophagosomes, suggesting that autophagy flow is affected. In-depth studies indicate that ESCRT is involved in the regulation of several processes of different types of autophagy, and its subunits also interact with autophagy-related proteins. This article reviews the related research in recent years.

Cite this article

Yi LI , Da-wei SUN , De-rong CUI . Research progress in the relationship between endosomal sorting complexes required for transport and autophagy[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021 , 41(9) : 1256 -1260 . DOI: 10.3969/j.issn.1674-8115.2021.09.019

References

1 Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol, 1962, 12: 198-202.
2 Peker N, Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system[J]. J Mol Biol, 2020, 432(8): 2560-2588.
3 Ravanan P, Srikumar IF, Talwar P. Autophagy: the spotlight for cellular stress responses[J]. Life Sci, 2017, 188: 53-67.
4 Saha S, Panigrahi DP, Patil S, et al. Autophagy in health and disease: a comprehensive review[J]. Biomedecine Pharmacother, 2018, 104: 485-495.
5 Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole[J]. Microbiol Mol Biol Rev, 1998, 62(1): 230-247.
6 Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway[J]. Cold Spring Harb Perspect Biol, 2013, 5(9): a016766.
7 Rusten TE, Stenmark H. How do ESCRT proteins control autophagy?[J]. J Cell Sci, 2009, 122(Pt 13): 2179-2183.
8 Filimonenko M, Stuffers S, Raiborg C, et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease[J]. J Cell Biol, 2007, 179(3): 485-500.
9 Krasniak CS, Ahmad ST. The role of CHMP2BIntron5 in autophagy and frontotemporal dementia[J]. Brain Res, 2016, 1649(Pt B): 151-157.
10 Wang HQ, Wang XJ, Zhang K, et al. Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration[J]. Sci Adv, 2019, 5(2): eaav4971.
11 Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473.
12 Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research[J]. Cell, 2010, 140(3): 313-326.
13 Christ L, Raiborg C, Wenzel EM, et al. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery[J]. Trends Biochem Sci, 2017, 42(1): 42-56.
14 Frankel EB, Audhya A. ESCRT-dependent cargo sorting at multivesicular endosomes[J]. Semin Cell Dev Biol, 2018, 74: 4-10.
15 Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs[J]. Nat Rev Mol Cell Biol, 2020, 21(1): 25-42.
16 Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again[J]. Crit Rev Biochem Mol Biol, 2014, 49(3): 242-261.
17 Takahashi Y, He HY, Tang ZY, et al. An autophagy assay reveals the ESCRT-Ⅲ component CHMP2A as a regulator of phagophore closure[J]. Nat Commun, 2018, 9(1): 2855.
18 Cuomo F, Altucci L, Cobellis G. Autophagy function and dysfunction: potential drugs as anti-cancer therapy[J]. Cancers (Basel), 2019, 11(10): E1465.
19 Zhen Y, Spangenberg H, Munson MJ, et al. ESCRT-mediated phagophore sealing during mitophagy[J]. Autophagy, 2020, 16(5): 826-841.
20 Nara A, Mizushima N, Yamamoto A, et al. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation[J]. Cell Struct Funct, 2002, 27(1): 29-37.
21 Rusten TE, Vaccari T, Lindmo K, et al. ESCRTs and Fab1 regulate distinct steps of autophagy[J]. Curr Biol, 2007, 17(20): 1817-1825.
22 Feng Q, Luo Y, Zhang XN, et al. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-Ⅲ complex formation: a vicious cycle in Alzheimer neurodegeneration[J]. Autophagy, 2020, 16(4): 641-658.
23 Oku M, Maeda Y, Kagohashi Y, et al. Evidence for ESCRT- and clathrin-dependent microautophagy[J]. J Cell Biol, 2017, 216(10): 3263-3274.
24 Sch?fer JA, Schessner JP, Bircham PW, et al. ESCRT machinery mediates selective microautophagy of endoplasmic Reticulum in yeast[J]. EMBO J, 2020, 39(2): e102586.
25 Sch?fer JA, Schuck S. ESCRTing endoplasmic Reticulum to microautophagic degradation[J]. Autophagy, 2020, 16(4): 763-764.
26 Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes[J]. Dev Cell, 2011, 20(1): 131-139.
27 Mukherjee A, Patel B, Koga H, et al. Selective endosomal microautophagy is starvation-inducible in Drosophila[J]. Autophagy, 2016, 12(11): 1984-1999.
28 Hammerling BC, Najor RH, Cortez MQ, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance[J]. Nat Commun, 2017, 8: 14050.
29 Murrow L, Debnath J. ATG12-ATG3 connects basal autophagy and late endosome function[J]. Autophagy, 2015, 11(6): 961-962.
30 Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function[J]. Nat Cell Biol, 2015, 17(3): 300-310.
31 Gao CJ, Luo M, Zhao Q, et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth[J]. Curr Biol, 2014, 24(21): 2556-2563.
32 Gao CJ, Zhuang XH, Cui Y, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation[J]. Proc Natl Acad Sci USA, 2015, 112(6): 1886-1891.
33 Zhuang XH, Jiang LW. Autophagosome biogenesis in plants: roles of SH3P2[J]. Autophagy, 2014, 10(4): 704-705.
Outlines

/