Journal of Shanghai Jiao Tong University (Medical Science) >
Review of MRI-based three-dimensional digital model reconstruction of female pelvic floor organs
Received date: 2021-11-04
Online published: 2022-05-09
Supported by
National Natural Science Foundation of China(82071631)
Changes in the structure and function of female pelvic floor organs, muscles and surrounding connective tissue are the main causes of pelvic floor disorders (PFD), and a detailed understanding of the spatial anatomy of the pelvic floor under physiological and pathological conditions can help clinicians make accurate diagnoses and optimize treatment strategies. The widespread use of magnetic resonance imaging (MRI) technology has improved clinicians' understanding of the pelvic floor structure, but presentation of the pelvic floor structure is still limited to two-dimensional planar images and the three-dimensional (3D) spatial structure cannot be visualized. The 3D reconstruction technology based on MRI can transform the structure of the female pelvic floor organs into digital models for observation, measurement and even 3D printing for inverse analysis, which greatly promotes the clinical understanding of the pathogenesis and treatment of PFD and provides basis for individualized treatment. However, the existing MRI-based 3D reconstruction technology is not yet mature, for example different advantages and disadvantages of different commercial softwares, different algorithms of different image recognition techniques, lack of uniform evaluation criteria for 3D reconstruction models, and difficulty of balancing modeling efficiency and quality, which limit it as an effective medical research tool for PFD. This paper reviews the research of 3D digital model reconstruction of female pelvic floor tissue and organs based on MRI, aiming to provide reference for clinical diagnosis, treatment and scientific research of PFD.
Liqi CHEN , Zhuowei XUE , Qingkai WU . Review of MRI-based three-dimensional digital model reconstruction of female pelvic floor organs[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(3) : 381 -386 . DOI: 10.3969/j.issn.1674-8115.2022.03.018
1 | 李志毅, 朱兰, 徐涛, 等. 中国城市地区女性盆腔器官脱垂临床流行病学调查[J]. 中华医学杂志, 2019, 99(11): 857-861. |
2 | VERBEEK M, HAYWARD L. Pelvic floor dysfunction and its effect on quality of sexual life[J]. Sex Med Rev, 2019, 7(4): 559-564. |
3 | CHEN L Y, LENZ F, ALT C D, et al. MRI visible Fe3O4 polypropylene mesh: 3D reconstruction of spatial relation to bony pelvis and neurovascular structures[J]. Int Urogynecol J, 2017, 28(8): 1131-1138. |
4 | FITZGERALD J, RICHTER L A. The role of MRI in the diagnosis of pelvic floor disorders[J]. Curr Urol Rep, 2020, 21(7): 26. |
5 | 刘萍, 唐连, 陈春林, 等. 盆腔器官脱垂盆腔器官静动态磁共振成像三维变化特点研究[J]. 中国实用妇科与产科杂志, 2018, 34(3): 275-281. |
6 | ARIF-TIWARI H, TWISS C O, LIN F C, et al. Improved detection of pelvic organ prolapse: comparative utility of defecography phase sequence to nondefecography Valsalva maneuvers in dynamic pelvic floor magnetic resonance imaging[J]. Curr Probl Diagn Radiol, 2019, 48(4): 342-347. |
7 | RAMAGE L, SIMILLIS C, YEN C, et al. Magnetic resonance defecography versus clinical examination and fluoroscopy: a systematic review and meta-analysis[J]. Tech Coloproctol, 2017, 21(12): 915-927. |
8 | HUEBNER M, DELANCEY J O L. Levels of pelvic floor support: what do they look like on magnetic resonance imaging?[J]. Int Urogynecol J, 2019, 30(9): 1593-1595. |
9 | 崔国策, 周娇娇, 李华山. 基于MRI检查二维、三维重建图像的直肠脱垂女性患者盆底肛提肌形态解剖学观察[J]. 山东医药, 2019, 59(12): 22-26. |
10 | JEANDITGAUTIER E, MAYEUR O, BRIEU M, et al. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system[J]. Int Urogynecol J, 2016, 27(6): 951-957. |
11 | 雷玲, 赵骏, 吴毅, 等. 基于磁共振成像子宫脱垂患者盆底结构三维重建与分析[J]. 实用妇产科杂志, 2016, 32(4): 289-294. |
12 | BROCKER K A, MOKRY T, ALT C D, et al. 3D reconstruction of MR-visible Fe3O4-mesh implants: pelvic mesh measurement techniques and preliminary findings[J]. Neurourol Urodyn, 2019, 38(1): 369-378. |
13 | LUO J J, BETSCHART C, CHEN L Y, et al. Using stress MRI to analyze the 3D changes in apical ligament geometry from rest to maximal Valsalva: a pilot study[J]. Int Urogynecol J, 2014, 25(2): 197-203. |
14 | 贾翔. MRI三维可视化技术结合逆向分析法在女性盆底疾病中的应用[D]. 苏州: 苏州大学, 2016. |
15 | PIPITONE F, SWENSON C W, DELANCEY J O L, et al. Novel 3D MRI technique to measure perineal membrane structural changes with pregnancy and childbirth: technique development and measurement feasibility[J]. Int Urogynecol J, 2021, 32(9): 2413-2420. |
16 | 刘萍, 唐连. 磁共振成像盆底三维重建的方法及意义[J]. 中国实用妇科与产科杂志, 2017, 33(10): 1014-1018. |
17 | 郭建生, 陈柯蓉, 刘嘉, 等. 个体化经肛提肌外腹会阴联合切除术治疗低位直肠后壁肿瘤对盆底影响的有限元分析[J]. 中国肿瘤临床, 2017, 44(24): 1268-1271. |
18 | 刘潇, 张彬, 任力娟, 等. 女性盆底功能障碍性疾病中肛提肌的有限元应力分析[J]. 中华临床医师杂志(电子版), 2017, 11(9): 1609-1612. |
19 | LI Y G, CHEN C L, LIAO K D, et al. Study on the cephalopelvic relationship with cephalic presentation in nulliparous full-term Chinese pregnant women by MRI with three-dimensional reconstruction[J]. Arch Gynecol Obstet, 2018, 298(2): 433-441. |
20 | LI J R, LEI L, LUO N, et al. Architecture of female urethral supporting structures based on undeformed high-resolution sectional anatomical images[J]. Anat Sci Int, 2021, 96(1): 30-41. |
21 | 杨晓红, 徐惠成, 陈伟, 等. 子宫脱垂患者骶主韧带MR三维重建模型的研究[J]. 第三军医大学学报, 2012, 34(6): 546-550. |
22 | LERCH T D, DEGONDA C, SCHMARANZER F, et al. Patient-specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy[J]. Am J Sports Med, 2019, 47(12): 2966-2977. |
23 | 张冀, 郑传哲. 基于多尺度CNN-RNN的单图三维重建网络[J]. 计算机应用研究, 2020, 37(11): 3487-3491. |
24 | 周洁洁, 张洋, 苏敏莹, 等. 基于动态增强磁共振成像的影像组学和不同CNN的深度学习对乳腺良恶性病变的诊断价值[J]. 温州医科大学学报, 2020, 50(6): 475-479. |
25 | 马昊, 李淑琴, 丁濛. 基于深度学习的人体动作草图到三维骨骼模型重建方法的研究[J]. 计算机应用研究, 2020, 37(6): 1867-1870. |
26 | 丁明为. 基于深度神经网络的回波平面成像无参考扫描奈奎斯特伪影校正[D]. 厦门: 厦门大学, 2019. |
27 | SARI H S, REAUNGAMORNRAT J, CATALANO O A, et al. Evaluation of deep learning-based approaches to segment bowel air pockets and generate pelvic attenuation maps from CAIPIRINHA-accelerated Dixon MR images[J]. J Nucl Med, 2022, 63(3): 468-475. |
28 | ZABIHOLLAHY F, VISWANATHAN A N, SCHMIDT E J, et al. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network[J]. Med Phys, 2021, 48(11): 7028-7042. |
29 | LIU X, HAN C, WANG H, et al. Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network[J]. Insights Imaging, 2021, 12(1): 93. |
30 | CASTELVECCHI D. Can we open the black box of AI? [J]. Nature, 2016, 538(7623): 20-23. |
31 | 叶建平, 王大平, 张吉帅, 等. 基于磁共振图像的骨骼分割的方法及其系统: CN103871057A[P]. 2017-07-28. |
32 | 陈冰红. 基于灰度边缘融合的相似性多色谱图像降噪技术[J]. 电子测量技术, 2019, 42(11): 92-96. |
33 | FENG F, ASHTON-MILLER J A, DELANCEY J O L, et al. Feasibility of a deep learning-based method for automated localization of pelvic floor landmarks using stress MR images[J]. Int Urogynecol J, 2021, 32(11): 3069-3075. |
/
〈 |
|
〉 |