Journal of Shanghai Jiao Tong University (Medical Science) >
Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer
Received date: 2021-12-31
Accepted date: 2022-03-19
Online published: 2022-04-28
Supported by
National Natural Science Foundation of China(82030045)
Epidermal growth factor receptor (EGFR) gene is the most common driver gene of non-small cell lung cancer. Tyrosine kinase inhibitors (TKIs) targeting EGFR mutations are the first-line treatment choice for patients with EGFR mutations. Although three generations of drugs have been widely used in clinical practice, unavoidable secondary resistance and primary resistance to some treatment-naive patients still pose great challenges to the long-term use of EGFR-TKIs. Resistance mechanism of the first- and second-generation EGFR-TKIs are well studied, including T790M mutation, MET amplification, ERBB2 amplification, IGF1R up-regulation, AXL activation, etc. The third-generation TKIs can overcome the most common T790M mutation that the first two generations bring in, but with the increasingly widespread clinical use, their drug resistance problem is also attracting widespread attention, and the related mechanisms and overcoming strategies are still under study. Mechanisms can be divided into EGFR-dependent and EGFR-independent ones, involving target-gene mutation, bypass signaling activation, phenotypic plasticity, epigenetic regulation, inhibitory immune microenvironment and so on. The fourth-generation TKIs, combination therapy and immunotherapy are all potential modalities after drug resistance.
Wenqing LU , Zhouwenli MENG , Yongfeng YU , Shun LU . Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(4) : 535 -544 . DOI: 10.3969/j.issn.1674-8115.2022.04.017
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | WU L L, KE L P, ZHANG Z S, et al. Development of EGFR TKIs and options to manage resistance of third-generation EGFR TKI osimertinib: conventional ways and immune checkpoint inhibitors[J]. Front Oncol, 2020, 10: 602762. |
3 | YUN C H, MENGWASSER K E, TOMS A V, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP[J]. Proc Natl Acad Sci USA, 2008, 105(6): 2070-2075. |
4 | BALAK M N, GONG Y X, RIELY G J, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors[J]. Clin Cancer Res, 2006, 12(21): 6494-6501. |
5 | COSTA D B, SCHUMER S T, TENEN D G, et al. Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations[J]. J Clin Oncol, 2008, 26(7): 1182-1184. |
6 | ARCILA M E, NAFA K, CHAFT J E, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics[J]. Mol Cancer Ther, 2013, 12(2): 220-229. |
7 | YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247. |
8 | ABOUNADER R, LATERRA J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis[J]. Neuro-Oncology, 2005, 7(4): 436-451. |
9 | GANDARA D R, LI T H, LARA P N, et al. Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications[J]. Clin Lung Cancer, 2014, 15(1): 1-6. |
10 | SORIA J C, WU Y L, NAKAGAWA K, et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial[J]. Lancet Oncol, 2015, 16(8): 990-998. |
11 | PARK K, YU C J, KIM S W, et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in Asian patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer: the ASPIRATION study[J]. JAMA Oncol, 2016, 2(3): 305-312. |
12 | YU H A, SIMA C S, HUANG J, et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors[J]. J Thorac Oncol, 2013, 8(3): 346-351. |
13 | TAN C S, CHO B C, SOO R A. Treatment options for EGFR mutant NSCLC with CNS involvement-Can patients BLOOM with the use of next generation EGFR TKIs? [J]. Lung Cancer, 2017, 108: 29-37. |
14 | CROSS D A E, ASHTON S E, GHIORGHIU S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer[J]. Cancer Discov, 2014, 4(9): 1046-1061. |
15 | MOK T S, WU Y L, AHN M J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer[J]. N Engl J Med, 2017, 376(7): 629-640. |
16 | RAMALINGAM S S, VANSTEENKISTE J, PLANCHARD D, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC[J]. N Engl J Med, 2020, 382(1): 41-50. |
17 | WU Y L, TSUBOI M, HE J, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer[J]. N Engl J Med, 2020, 383(18): 1711-1723. |
18 | AHN M J, HAN J Y, LEE K H, et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study[J]. Lancet Oncol, 2019, 20(12): 1681-1690. |
19 | SHI Y K, HU X S, ZHANG S C, et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study[J]. Lancet Respir Med, 2021, 9(8): 829-839. |
20 | SCHOENFELD A J, CHAN J M, RIZVI H, et al. Tissue-based molecular and histological landscape of acquired resistance to osimertinib given initially or at relapse in patients with EGFR-mutant lung cancers[J]. J Clin Oncol, 2019, 37(15_suppl): 9028. |
21 | WENG C H, CHEN L Y, LIN Y C, et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI[J]. Oncogene, 2019, 38(4): 455-468. |
22 | NIEDERST M J, HU H C, MULVEY H E, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies[J]. Clin Cancer Res, 2015, 21(17): 3924-3933. |
23 | TANG Z H, LU J J. Osimertinib resistance in non-small cell lung cancer: mechanisms and therapeutic strategies[J]. Cancer Lett, 2018, 420: 242-246. |
24 | LE X N, PURI S, NEGRAO M V, et al. Landscape of EGFR-dependent and-independent resistance mechanisms to osimertinib and continuation therapy beyond progression in EGFR-mutant NSCLC[J]. Clin Cancer Res, 2018, 24(24): 6195-6203. |
25 | PELED N, ROISMAN L C, MIRON B, et al. Subclonal therapy by two EGFR TKIs guided by sequential plasma cell-free DNA in EGFR-mutated lung cancer[J]. J Thorac Oncol, 2017, 12(7): e81-e84. |
26 | STARRETT J H, GUERNET A A, CUOMO M E, et al. Drug sensitivity and allele specificity of first-line osimertinib resistance EGFR mutations[J]. Cancer Res, 2020, 80(10): 2017-2030. |
27 | LIN Y T, TSAI T H, WU S G, et al. Complex EGFR mutations with secondary T790M mutation confer shorter osimertinib progression-free survival and overall survival in advanced non-small cell lung cancer[J]. Lung Cancer, 2020, 145: 1-9. |
28 | OXNARD G R, HU Y B, MILEHAM K F, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib[J]. JAMA Oncol, 2018, 4(11): 1527-1534. |
29 | LEE J Y, KIM H S, LEE B, et al. Genomic landscape of acquired resistance to third-generation EGFR tyrosine kinase inhibitors in EGFR T790M-mutant non-small cell lung cancer[J]. Cancer, 2020, 126(11): 2704-2712. |
30 | PIOTROWSKA Z, NAGY R, FAIRCLOUGH S, et al. OA 09.01 characterizing the genomic landscape of EGFR C797S in lung cancer using ctDNA next-generation sequencing[J]. J Thorac Oncol, 2017, 12(11): S1767. |
31 | WANG Z, YANG J J, HUANG J, et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance[J]. J Thorac Oncol, 2017, 12(11): 1723-1727. |
32 | RAMALINGAM S S, CHENG Y, ZHOU C, et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase Ⅲ FLAURA study[J]. Ann Oncol, 2018, 29: viii740. |
33 | ENGELMAN J A, ZEJNULLAHU K, MITSUDOMI T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827): 1039-1043. |
34 | HSU C C, LIAO B C, LIAO W Y, et al. Exon 16-skipping HER2 as a novel mechanism of osimertinib resistance in EGFR L858R/T790M-positive non-small cell lung cancer[J]. J Thorac Oncol, 2020, 15(1): 50-61. |
35 | HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. |
36 | QUINTANAL-VILLALONGA á, CHAN J M, YU H A, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance[J]. Nat Rev Clin Oncol, 2020, 17(6): 360-371. |
37 | MARCOUX N, GETTINGER S N, O'KANE G, et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes[J]. J Clin Oncol, 2019, 37(4): 278-285. |
38 | QUINTANAL-VILLALONGA A, TANIGUCHI H, ZHAN Y A, et al. Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation[J]. Cancer Discov, 2021, 11(12):3028-3047. |
39 | KUO M H, LEE A C, HSIAO S H, et al. Cross-talk between SOX2 and TGFβ signaling regulates EGFR–TKI tolerance and lung cancer dissemination[J]. Cancer Res, 2020, 80(20): 4426-4438. |
40 | LOTSBERG M L, WNUK-LIPINSKA K, TERRY S, et al. AXL targeting abrogates autophagic flux and induces immunogenic cell death in drug-resistant cancer cells[J]. J Thorac Oncol, 2020, 15(6): 973-999. |
41 | NILSSON M B, SUN H Y, ROBICHAUX J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components[J]. Sci Transl Med, 2020, 12(559): eaaz4589. |
42 | KURPPA K J, LIU Y, TO C, et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway[J]. Cancer Cell, 2020, 37(1): 104-122.e12. |
43 | WANG L H, DONG X Y, REN Y, et al. Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway[J]. Cell Death Dis, 2018, 9(2): 129. |
44 | NAKAGAWA T, TAKEUCHI S, YAMADA T, et al. EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition[J]. Cancer Res, 2013, 73(8): 2428-2434. |
45 | PERALTA-ARRIETA I, TREJO-VILLEGAS O A, ARMAS-LóPEZ L, et al. Failure to EGFR-TKI-based therapy and tumoural progression are promoted by MEOX2/GLI1-mediated epigenetic regulation of EGFR in the human lung cancer[J]. Eur J Cancer, 2022, 160: 189-205. |
46 | YANG L, HE Y T, DONG S, et al. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma[J]. J Immunother Cancer, 2022, 10(2): e003534. |
47 | PENG S L, WANG R, ZHANG X J, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Mol Cancer, 2019, 18(1): 165. |
48 | WU S C, LUO M, TO K K W, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1): 17. |
49 | SHAH K N, BHATT R, ROTOW J, et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer[J]. Nat Med, 2019, 25(1): 111-118. |
50 | WANG S H, SONG Y P, LIU D L. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance[J]. Cancer Lett, 2017, 385: 51-54. |
51 | TO C, JANG J, CHEN T, et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor[J]. Cancer Discov, 2019, 9(7): 926-943. |
52 | LIU X L, ZHANG X Q, YANG L, et al. Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor[J]. Cancer Res 2019;79(13). |
53 | SEQUIST L V, HAN J Y, AHN M J, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study[J]. Lancet Oncol, 2020, 21(3): 373-386. |
54 | YU H A, GOLDBERG S B, LE X N, et al. Biomarker-directed phase Ⅱ platform study in patients with EGFR sensitizing mutation-positive advanced/metastatic non-small cell lung cancer whose disease has progressed on first-line osimertinib therapy (ORCHARD)[J]. Clin Lung Cancer, 2021, 22(6): 601-606. |
55 | WANG Y B, YANG N, ZHANG Y C, et al. Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and Cis-C797S triple mutations by brigatinib and cetuximab combination therapy[J]. J Thorac Oncol, 2020, 15(8): 1369-1375. |
56 | LA MONICA S, CRETELLA D, BONELLI M, et al. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines[J]. J Exp Clin Cancer Res, 2017, 36(1): 174. |
57 | LE X N, NILSSON M, GOLDMAN J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC[J]. J Thorac Oncol, 2021, 16(2): 205-215. |
58 | OXNARD G R, YANG J C H, YU H, et al. TATTON: a multi-arm, phase Ⅰb trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020, 31(4): 507-516. |
59 | SOCINSKI M A, JOTTE R M, CAPPUZZO F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301. |
60 | ZHANG J, ZHOU C, ZHAO Y, et al. MA11.06 A PII study of toripalimab, a PD-1 MAb, in combination with chemotherapy in EGFR+ advanced NSCLC patients failed to prior EGFR TKI therapies[J]. J Thorac Oncol, 2019, 14(10): S292. |
61 | BURNETT H, EMICH H, CARROLL C, et al. Epidemiological and clinical burden of EGFR Exon 20 insertion in advanced non-small cell lung cancer: a systematic literature review[J]. PLoS One, 2021, 16(3): e0247620. |
62 | NORONHA V, CHOUGHULE A, PATIL V, et al. Epidermal growth factor receptor exon 20 mutation in lung cancer: types, incidence, clinical features and impact on treatment[J]. Oncotargets Ther, 2017, 10: 2903-2908. |
63 | VAN VEGGEL B, DE LANGEN A J, HASHEMI S M S, et al. Afatinib and cetuximab in four patients with EGFR exon 20 insertion-positive advanced NSCLC[J]. J Thorac Oncol, 2018, 13(8): 1222-1226. |
64 | PARK K, JOHN T, KIM S W, et al. Amivantamab (JNJ-61186372), an anti-EGFR-MET bispecific antibody, in patients with EGFR exon 20 insertion (exon20ins)-mutated non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2020, 38(15_suppl): 9512. |
65 | PARK K, HAURA E B, LEIGHL N B, et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase Ⅰ study[J]. J Clin Oncol, 2021, 39(30): 3391-3402. |
66 | CHO B C, LEE K H, CHO E K, et al. 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC[J]. Ann Oncol, 2020, 31: S813. |
67 | LE X N, GOLDMAN J, CLARKE J, et al. Abstract CT081: poziotinib activity and durability of responses in previously treated EGFR exon 20 NSCLC patients: a Phase 2 study[C]//Tumor Biology. American Association for Cancer Research, 2020: 80(16). |
68 | GONZALVEZ F, VINCENT S, BAKER T E, et al. Mobocertinib (TAK-788): a targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer[J]. Cancer Discov, 2021, 11(7): 1672-1687. |
69 | FELIP E, BARLESI F, BESSE B, et al. Phase 2 study of the HSP-90 inhibitor AUY922 in previously treated and molecularly defined patients with advanced non-small cell lung cancer[J]. J Thorac Oncol, 2018, 13(4): 576-584. |
70 | PARK H R, KIM T M, LEE Y, et al. Acquired resistance to third-generation EGFR tyrosine kinase inhibitors in patients with de novo EGFRT790M-mutant NSCLC[J]. J Thorac Oncol, 2021, 16(11): 1859-1871. |
71 | ROBICHAUX J P, LE X N, VIJAYAN R S K, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC[J]. Nature, 2021, 597(7878): 732-737. |
/
〈 |
|
〉 |