Review

Research progress in the role of cancer stem cell metabolism in tumor development

  • Shifan ZHENG ,
  • Jiao MA
Expand
  • 1.Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2.Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University College of Basic Medical Science, Shanghai 200025, China
MA Jiao, E-mail: drjiaoma@shsmu.edu.cn.

Received date: 2022-03-02

  Accepted date: 2022-06-01

  Online published: 2022-08-19

Supported by

National Natural Science Foundation of China(81700134);Research Based Learning Project of Shanghai Jiao Tong University School of Medicine in 2021(2021RBL-B-010)

Abstract

The inability to fully eradicate cancer stem cells (CSCs) is considered to be a huge obstacle in tumor therapy. CSCs can be defined as a subpopulation of cells within heterogeneous tumors that have the potential for self-renewal and differentiation. They can also drive malignant behaviors, such as tumor initiation, resistance to chemotherapy and radiotherapy, and tumor relapse. Multiple aspects of CSCs have been studied, including specific cell surface markers, self-renewal pathways and epigenetic regulation. However, relatively little attention has yet been directed towards to the metabolism of CSCs. Based on the relevant research we currently know, here we review the properties of the energy and substance metabolism in CSCs, and we also discuss the role of CSCs in therapy resistance and tumor relapse from a metabolic perspective. In addition, we describe the linkage between CSCs metabolism and epigenetic regulation. Therefore, we highlight the huge therapeutic potential of targeting CSCs metabolism in tumor therapy.

Cite this article

Shifan ZHENG , Jiao MA . Research progress in the role of cancer stem cell metabolism in tumor development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(6) : 825 -832 . DOI: 10.3969/j.issn.1674-8115.2022.06.019

References

1 KRESO A, DICK J E. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275-291.
2 LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648.
3 BONNET D, DICK J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
4 AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
5 LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217.
6 O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110.
7 LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037.
8 KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6): 823-835.
9 MA S, CHAN K W, HU L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology, 2007, 132(7): 2542-2556.
10 HURT E M, KAWASAKI B T, KLARMANN G J, et al. CD44+ CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis[J]. Br J Cancer, 2008, 98(4): 756-765.
11 BATLLE E, CLEVERS H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134.
12 PRAGER B C, BHARGAVA S, MAHADEV V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends cancer, 2020, 6(3): 223-235.
13 POLLYEA D A, JORDAN C T. Therapeutic targeting of acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1627-1635.
14 YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8.
15 TOH T B, LIM J J, CHOW E K. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29.
16 WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
17 PENG F, WANG J H, FAN W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1062-1074.
18 HUR W, RYU J Y, KIM H U, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133[J]. Sci Rep, 2017, 7: 45557.
19 LIU P P, LIAO J, TANG Z J, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135.
20 ZHOU Y, ZHOU Y, SHINGU T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853.
21 LAGADINOU E D, SACH A, CALLAHAN K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J]. Cell Stem Cell, 2013, 12(3): 329-341.
22 KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240.
23 VLASHI E, LAGADEC C, VERGNES L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci USA, 2011, 108(38):16062-16067. DOI: 10.1073/pnas.1106704108.
24 JANISZEWSKA M, SUVà M L, RIGGI N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells[J]. Genes Dev, 2012, 26(17): 1926-1944.
25 VALLE S, ALCALá S, MARTIN-HIJANO L, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells[J]. Nat Commun, 2020, 11(1): 5265.
26 LEE K M, GILTNANE J M, BALKO J M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation[J]. Cell Metab, 2017, 26(4): 633-647.
27 PASTò A, BELLIO C, PILOTTO G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319.
28 GUO B, HAN X, TKACH D, et al. AMPK promotes the survival of colorectal cancer stem cells[J]. Animal Model Exp Med, 2018, 1(2): 134-142.
29 VELLINGA T T, BOROVSKI T, DE B V C, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer[J]. Clin Cancer Res, 2015, 21(12): 2870-2879.
30 RAGGI C, TADDEI M L, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385.
31 SKRTI? M, SRISKANTHADEVAN S, JHAS B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia[J]. Cancer Cell, 2011, 20(5): 674-688.
32 MOLINA J R, SUN Y, PROTOPOPOVA M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability[J]. Nat Med, 2018, 24(7): 1036-1046.
33 BROWN J R, CHAN D K, SHANK J J, et al. Phase Ⅱ clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer[J]. JCI Insight, 2020, 5(11): e133247.
34 KORDES S, POLLAK M N, ZWINDERMAN A H, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Oncol, 2015, 16(7): 839-847.
35 SANCHO P, BURGOS-RAMOS E, TAVERA A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605.
36 SHIBAO S, MINAMI N, KOIKE N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3) :343-354.
37 ANDERSON A S, ROBERTS P C, FRISARD M I, et al. Ovarian tumor-initiating cells display a flexible metabolism[J]. Exp Cell Res, 2014, 328(1) :44-57.
38 LIU S, CONG Y, WANG D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014, 2(1): 78-91.
39 LUO M, SHANG L, BROOKS M D, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling[J]. Cell Metab, 2018, 28(1): 69-86.e6.
40 PEI S, MINHAJUDDIN M, ADANE B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells[J]. Cell Stem Cell, 2018, 23(1): 86-100.e6.
41 ADANE B, YE H, KHAN N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells[J]. Cell Rep, 2019, 27(1): 238-254.e6.
42 DINARDO C D, PRATZ K W, LETAI A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2018, 19(2): 216-228.
43 JONES C L, STEVENS B M, D'ALESSANDRO A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells[J]. Cancer Cell, 2018, 34(5): 724-740.e4.
44 NACHMIAS B, SCHIMMER A D. Metabolic flexibility in leukemia-adapt or die[J]. Cancer Cell, 2018, 34(5): 695-696.
45 DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. Am J Hematol, 2018, 93(3): 401-407.
46 YI M, LI J, CHEN S, et al. Emerging role of lipid metabolism alterations in cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 118.
47 YASUMOTO Y, MIYAZAKI H, VAIDYAN L K, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J]. PLoS One, 2016, 11(1): e0147717.
48 ZHOU C, QIAN W, MA J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1): e12514.
49 LI J, CONDELLO S, THOMES-PEPIN J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.e5.
50 CHEN L, REN J, YANG L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Sci Rep, 2016, 6: 19665.
51 GALBRAITH L, LEUNG H Y, AHMAD I. Lipid pathway deregulation in advanced prostate cancer[J]. Pharmacol Res, 2018, 131: 177-184.
52 ZHANG Q, YU S, LAM M M T, et al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2019, 38(1): 116.
53 EHMSEN S, PEDERSEN M H, WANG G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome[J]. Cell Rep, 2019, 27(13): 3927-3938.e6.
54 LI X, WU J B, LI Q, et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer[J]. Oncotarget, 2016, 7(11): 12869-12884.
55 PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1): 41.
56 SHLUSH L I, MITCHELL A, HEISLER L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells[J]. Nature, 2017, 547(7661): 104-108.
57 STEVENS B M, JONES C L, POLLYEA D A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020, 1(12): 1176-1187.
58 WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-150.e5.
59 JONES C L, STEVENS B M, POLLYEA D A, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020, 27(5): 748-764.e4.
60 YE H, ADANE B, KHAN N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19(1): 23-37.
61 HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637-4654.
62 ZHANG Z, HAN H, RONG Y, et al. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 291.
63 T?NJES M, BARBUS S, PARK Y J, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908.
64 WANG Z Q, FADDAOUI A, BACHVAROVA M, et al. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism[J]. Oncotarget, 2015, 6(31): 31522-31543.
65 THEWES V, SIMON R, HLEVNJAK M, et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer[J]. Oncogene, 2017, 36(29): 4124-4134.
66 MAYERS J R, TORRENCE M E, DANAI L V, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers[J]. Science, 2016, 353(6304): 1161-1165.
67 HATTORI A, TSUNODA M, KONUMA T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504.
68 TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935.
69 RAFFEL S, FALCONE M, KNEISEL N, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017, 551(7680): 384-388.
70 FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567.
71 XU W, YANG H, LIU Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell, 2011, 19(1): 17-30.
72 LOSMAN J A, LOOPER R E, KOIVUNEN P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible[J]. Science, 2013, 339(6127): 1621-1625.
73 PASCHKA P, SCHLENK R F, GAIDZIK V I, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28(22): 3636-3643.
74 YEN K, TRAVINS J, WANG F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations[J]. Cancer Discov, 2017, 7(5): 478-493.
75 SHIH A H, MEYDAN C, SHANK K, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia[J]. Cancer Discov, 2017, 7(5): 494-505.
76 DINARDO C D, STEIN E M, DE B S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398.
77 WANG Z, YIP L Y, LEE J H J, et al. Methionine is a metabolic dependency of tumor-initiating cells[J]. Nat Med, 2019, 25(5):825-837.
Outlines

/