Review

Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments

  • Yu LU ,
  • Hao WANG ,
  • Qian BA
Expand
  • School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
BA Qian, E-mail: qba@shsmu.edu.cn.

Received date: 2022-03-02

  Accepted date: 2022-06-14

  Online published: 2022-07-26

Supported by

National Natural Science Foundation of China(81973078)

Abstract

The gut microbiota, as one of the microfloras existing in human body, is accounted for approximately 80% in human microbiome. Gut microbiota regulates digestive and immune functions through participating in physiological processes such as metabolism and immune homeostasis, meanwhile impacts the occurrence of cancer and controls the body response to cancer treatment drugs. Hepatocellular carcinoma (HCC) is a typical type of inflammatory cancer, the development of which follows the process of hepatitis, liver fibrosis, liver cirrhosis and HCC. The bidirectional communication system composed of gut microbiota, portal vein system and bile duct system, is usually called the enteric-liver axis. More and more research evidences show that gut microbiota can participate in the occurrence and development of HCC via the interaction cycle with the enteric-liver axis. In view of the specific transformation of gut microbiota in the early stage of HCC, it is usually regarded as a new target for the early diagnosis of HCC. Immunotherapy is an emerging treatment for advanced HCC. It is reported that regulating gut microbiota through probiotics, rational application of antibiotics, fecal transplantation and other methods can significantly improve the anti-tumor immune response of host. In the non-immunotherapy process of HCC chemotherapy, traditional Chinese medicine-assisted therapy and dietary pattern, remodeling gut microbiota homeostasis has potential value in postponing tumor progression, improving the prognosis of HCC treatment and maintaining body health. Since gut microbiota plays a crucial role in the occurrence, development and treatment of HCC, this review summarizes the studies of gut microbiota in the process of hepatitis, liver fibrosis, cirrhosis and HCC, and discusses its great potential as a target for the prevention, diagnosis and treatment of HCC.

Cite this article

Yu LU , Hao WANG , Qian BA . Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(7) : 939 -944 . DOI: 10.3969/j.issn.1674-8115.2022.07.014

References

1 VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
2 FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
3 SONBOL M B, RIAZ I B, NAQVI S A A, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: a systematic review and network meta-analysis[J]. JAMA Oncol, 2020, 6(12): e204930.
4 WOODHOUSE C A, PATEL V C, SINGANAYAGAM A, et al. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease[J]. Aliment Pharmacol Ther, 2018, 47(2): 192-202.
5 BENSON A K. The gut microbiome: an emerging complex trait[J]. Nat Genet, 2016, 48(11): 1301-1302.
6 SONG M Y, CHAN A T, SUN J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer[J]. Gastroenterology, 2020, 158(2): 322-340.
7 SUEZ J, ZMORA N, SEGAL E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
8 DUBINKINA V B, TYAKHT A V, ODINTSOVA V Y, et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease[J]. Microbiome, 2017, 5(1): 141.
9 FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71.
10 LI J, SUNG C Y, LEE N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice[J]. Proc Natl Acad Sci U S A, 2016, 113(9): E1306-E1315.
11 ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
12 BAJAJ J S. Alcohol, liver disease and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 235-246.
13 EL-SERAG H B. Hepatocellular carcinoma[J]. N Engl J Med, 2011, 365(12): 1118-1127.
14 SCHWABE R F, GRETEN T F. Gut microbiome in HCC: mechanisms, diagnosis and therapy[J]. J Hepatol, 2020, 72(2): 230-238.
15 TRIPATHI A, DEBELIUS J, BRENNER D A, et al. Publisher Correction: the gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 785.
16 YU L X, SCHWABE R F. The gut microbiome and liver cancer: mechanisms and clinical translation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(9): 527-539.
17 DAPITO D H, MENCIN A, GWAK G Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]. Cancer Cell, 2012, 21(4): 504-516.
18 BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63(3): 764-775.
19 SEKI E, DE MINICIS S, OSTERREICHER C H, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis[J]. Nat Med, 2007, 13(11): 1324-1332.
20 ISAYAMA F, HINES I N, KREMER M, et al. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): G1318-G1328.
21 TAN C C, LING Z X, HUANG Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis[J]. Pancreas, 2015, 44(6): 868-875.
22 OIKONOMOU T, PAPATHEODORIDIS G V, SAMARKOS M, et al. Clinical impact of microbiome in patients with decompensated cirrhosis[J]. World J Gastroenterol, 2018, 24(34): 3813-3820.
23 MONTE M J, MARIN J J G, ANTELO A, et al. Bile acids: chemistry, physiology, and pathophysiology[J]. World J Gastroenterol, 2009, 15(7): 804-816.
24 XIE G X, WANG X N, HUANG F J, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis[J]. Int J Cancer, 2016, 139(8): 1764-1775.
25 GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472.
26 LOO T M, KAMACHI F, WATANABE Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity[J]. Cancer Discov, 2017, 7(5): 522-538.
27 ZHANG X, COKER O O, CHU E S, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4): 761-774.
28 REN Z G, LI A, JIANG J W, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6): 1014-1023.
29 DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7): 1096-1103.
30 ZHANG L, DING J, LI H Y, et al. Immunotherapy for advanced hepatocellular carcinoma, where are we? [J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188441.
31 LIU Z Y, LIN Y, ZHANG J Y, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 447.
32 TEMRAZ S, NASSAR F, KREIDIEH F, et al. Hepatocellular carcinoma immunotherapy and the potential influence of gut microbiome[J]. Int J Mol Sci, 2021, 22(15): 7800.
33 KOLODZIEJCZYK A A, ZHENG D P, SHIBOLET O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med, 2019, 11(2): e9302.
34 ZHENG Y, WANG T T, TU X X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma[J]. J Immunother Cancer, 2019, 7(1): 193.
35 CHANG C J, LIN T L, TSAI Y L, et al. Next generation probiotics in disease amelioration[J]. J Food Drug Anal, 2019, 27(3): 615-622.
36 HAN J J, ZHANG S Y, XU Y, et al. Beneficial effect of antibiotics and microbial metabolites on expanded Vδ2Vγ9 T cells in hepatocellular carcinoma immunotherapy[J]. Front Immunol, 2020, 11: 1380.
37 ROUTY B, LE CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
38 SMITS L P, BOUTER K E C, DE VOS W M, et al. Therapeutic potential of fecal microbiota transplantation[J]. Gastroenterology, 2013, 145(5): 946-953.
39 OO K M, LWIN A A, KYAW Y Y, et al. Safety and long-term effect of the probiotic FK-23 in patients with hepatitis C virus infection[J]. Biosci Microbiota Food Health, 2016, 35(3): 123-128.
40 LEE D K, KANG J Y, SHIN H S, et al. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus[J]. Arch Pharm Res, 2013, 36(12): 1525-1532.
41 LIU Y H, LIU Q, HESKETH J, et al. Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis[J]. J Nutr Biochem, 2018, 58: 138-149.
42 WU R H, MEI X T, YE Y B, et al. Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis[J]. Pharmacol Res, 2019, 150: 104454.
43 FU H Y, LIU X, JIN L, et al. Safflower yellow reduces DEN-induced hepatocellular carcinoma by enhancing liver immune infiltration through promotion of collagen degradation and modulation of gut microbiota[J]. Food Funct, 2021, 12(21): 10632-10643.
44 REN Z G, CHEN X M, HONG L J, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis[J]. Small, 2020, 16(2): e1905233.
45 WANG W, XU A L, LI Z C, et al. Combination of probiotics and Salvia miltiorrhiza polysaccharide alleviates hepatic steatosis via gut microbiota modulation and insulin resistance improvement in high fat-induced NAFLD mice[J]. Diabetes Metab J, 2020, 44(2): 336-348.
46 LE BASTARD Q, CHAPELET G, JAVAUDIN F, et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(3): 403-413.
47 KOLODZIEJCZYK A A, ZHENG D P, ELINAV E. Diet-microbiota interactions and personalized nutrition[J]. Nat Rev Microbiol, 2019, 17(12): 742-753.
Outlines

/