Review

Research advances in CRISPR-Cas systems and anti-CRISPR protein families in Klebsiella pneumoniae

  • Chunyu JIANG ,
  • Xiaokui GUO ,
  • Jinhong QIN
Expand
  • 1.Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2.School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
QIN Jinhong, E-mail: jinhongqin@sjtu.edu.cn.

Received date: 2022-07-12

  Accepted date: 2022-11-28

  Online published: 2022-12-28

Supported by

National Natural Science Foundation of China(32170141)

Abstract

Klebsiella pneumoniae (Kp)is widely distributed in nature. Pathogenic Kp can cause a wide range of clinical infections, including respiratory infection, bloodstream infection, liver abscess, urinary system infection and so on. As a famous "plasmid collector", Kp can habor different types of plasmids in its genome. As a result, multidrug-resistant (MDR) strains continue to appear in recent years. Especially, the emergence of hypervirulent MDR (hv-MDR) Kp brings great challenges to clinical treatment. Therefore, the ability of Kp to obtain foreign genes, especially drug resistance and virulence-related genes, has attracted the attention of a large number of scholars. As the major acquired immune system in bacteria, the active clustered regularly interspaced palindromic repeats/CRISPR-associated proteins (CRISPR-Cas) system can effectively block the horizontal transfer of mobile elements into the genome of Kp, especially for transfer ability of conjugative plasmids. In recent years, it has been found that some conjugative plasmids carry anti-CRISPR (Acr) protein to inhibit the activity of the CRISPR-Cas system encoded by host bacteria, escape the host immune recognition, and then can effectively transfer between hosts. The sequenced Kp genome showed that the main types of CRISPR-Cas system in its genome were type I-E and subtype I-E*. Therefore, analysis of the relationship between the CRISPR-Cas distribution and transfer ability of plasmid in Kp and further exploration of the mechanism of Acr protein in regulating the activity of CRISPR-Cas, will provide clues and direction to the dynamics of its genome evolution. It will eventually provide clinical guidance for the prevention and control of hv-MDR Kp.

Cite this article

Chunyu JIANG , Xiaokui GUO , Jinhong QIN . Research advances in CRISPR-Cas systems and anti-CRISPR protein families in Klebsiella pneumoniae[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(12) : 1757 -1765 . DOI: 10.3969/j.issn.1674-8115.2022.12.015

References

1 BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
2 LI H Y, KAO C Y, LIN W H, et al. Characterization of CRISPR-cas systems in clinical Klebsiella pneumoniae isolates uncovers its potential association with antibiotic susceptibility[J]. Front Microbiol, 2018, 9: 1595.
3 LANDER E S. The heroes of CRISPR[J]. Cell, 2016, 164(1/2): 18-28.
4 FRIEDLAENDER C. Ueber Die schizomyceten Bei der acuten fibr?sen pneumonie[J]. Arch Für Pathol Anat Und Physiol Und Für Klinische Med, 1882, 87(2): 319-324.
5 BAGLEY S T. Habitat association of Klebsiella species[J]. Infect Control, 1985, 6(2): 52-58.
6 HOLT K E, WERTHEIM H, ZADOKS R N, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health[J]. Proc Natl Acad Sci USA, 2015, 112(27): E3574-E3581.
7 WYRES K L, HOLT K E. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones[J]. Trends Microbiol, 2016, 24(12): 944-956.
8 DIANCOURT L, PASSET V, VERHOEF J, et al. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates[J]. J Clin Microbiol, 2005, 43(8): 4178-4182.
9 PODSCHUN R, ULLMANN U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors[J]. Clin Microbiol Rev, 1998, 11(4): 589-603.
10 DELEO F R, CHEN L, PORCELLA S F, et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae[J]. Proc Natl Acad Sci USA, 2014, 111(13): 4988-4993.
11 CONLAN S, THOMAS P J, DEMING C, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae[J]. Sci Transl Med, 2014, 6(254): 254ra126.
12 CAI M F, PU B C, WANG Y, et al. A plasmid with conserved phage genes helps Klebsiella pneumoniae defend against the invasion of transferable DNA elements at the cost of reduced virulence[J]. Front Microbiol, 2022, 13: 827545.
13 IREDELL J, BROWN J, TAGG K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications[J]. BMJ, 2016, 352: h6420.
14 RAMIREZ M S, TRAGLIA G M, LIN D L, et al. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm[J]. Microbiol Spectr, 2014, 2(5). DOI: 10.1128/microbiolspec.PLAS-0016-2013.
15 SEBGHATI T A, KORHONEN T K, HORNICK D B, et al. Characterization of the type 3 fimbrial adhesins of Klebsiella strains[J]. Infect Immun, 1998, 66(6): 2887-2894.
16 KOSKINEN K, PENTTINEN R, ?RM?L?-ODEGRIP A M, et al. Systematic comparison of epidemic and non-epidemic carbapenem resistant Klebsiella pneumoniae strains[J]. Front Cell Infect Microbiol, 2021, 11: 599924.
17 CANDAN E D, AKS?Z N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors[J]. Acta Biochim Pol, 2015, 62(4): 867-874.
18 MEDINI D, DONATI C, TETTELIN H, et al. The microbial pan-genome[J]. Curr Opin Genet Dev, 2005, 15(6): 589-594.
19 BIALEK-DAVENET S, CRISCUOLO A, AILLOUD F, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups[J]. Emerg Infect Dis, 2014, 20(11): 1812-1820.
20 CHOBY J E, HOWARD-ANDERSON J, WEISS D S. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives[J]. J Intern Med, 2020, 287(3): 283-300.
21 LAM M M C, WYRES K L, WICK R R, et al. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15[J]. J Antimicrob Chemother, 2019, 74(5): 1218-1222.
22 DIAS C, BORGES A, OLIVEIRA D, et al. Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals[J]. PeerJ, 2018, 6: e4974.
23 TAN T Y, ONG M, CHENG Y, et al. Hypermucoviscosity, rmpA, and aerobactin are associated with community-acquired Klebsiella pneumoniae bacteremic isolates causing liver abscess in Singapore[J]. J Microbiol Immunol Infect, 2019, 52(1): 30-34.
24 SCHUBERT S, PICARD B, GOURIOU S, et al. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections[J]. Infect Immun, 2002, 70(9): 5335-5337.
25 RUSSO T A, OLSON R, MACDONALD U, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae[J]. Infect Immun, 2014, 82(6): 2356-2367.
26 NASSIF X, FOURNIER J M, ARONDEL J, et al. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor[J]. Infect Immun, 1989, 57(2): 546-552.
27 GU D X, DONG N, ZHENG Z W, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study[J]. Lancet Infect Dis, 2018, 18(1): 37-46.
28 PEIRANO G, CHEN L, KREISWIRTH B N, et al. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147[J]. Antimicrob Agents Chemother, 2020, 64(10): e01148-e01120.
29 GU D X, HUANG Y L, MA J H, et al. Detection of colistin resistance gene mcr-1 in hypervirulent Klebsiella pneumoniae and Escherichia coli isolates from an infant with diarrhea in China[J]. Antimicrob Agents Chemother, 2016, 60(8): 5099-5100.
30 LAM M M C, WYRES K L, DUCHêNE S, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination[J]. Nat Commun, 2018, 9(1): 2703.
31 XIE Y Z, TIAN L J, LI G, et al. Emergence of the third-generation cephalosporin-resistant hypervirulent Klebsiella pneumoniae due to the acquisition of a self-transferable blaDHA-1-carrying plasmid by an ST23 strain[J]. Virulence, 2018, 9(1): 838-844.
32 TURTON J F, PAYNE Z, COWARD A, et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and 'non-hypervirulent' types ST147, ST15 and ST383[J]. J Med Microbiol, 2018, 67(1): 118-128.
33 QIN J H, WU N N, BAO J, et al. Heterogeneous Klebsiella pneumoniae co-infections complicate personalized bacteriophage therapy[J]. Front Cell Infect Microbiol, 2021, 10: 608402.
34 LABRIE S J, SAMSON J E, MOINEAU S. Bacteriophage resistance mechanisms[J]. Nat Rev Microbiol, 2010, 8(5): 317-327.
35 HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259.
36 LOUWEN R, STAALS R H J, ENDTZ H P, et al. The role of CRISPR-Cas systems in virulence of pathogenic bacteria[J]. Microbiol Mol Biol Rev, 2014, 78(1): 74-88.
37 ALMENDROS C, MOJICA F J M, DíEZ-VILLASE?OR C, et al. CRISPR-Cas functional module exchange in Escherichia coli[J]. mBio, 2014, 5(1): e00767-e00713.
38 BIKARD D, HATOUM-ASLAN A, MUCIDA D, et al. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection[J]. Cell Host Microbe, 2012, 12(2): 177-186.
39 GRISSA I, VERGNAUD G, POURCEL C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8: 172.
40 HOOTON S P T, CONNERTON I F. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein[J]. Front Microbiol, 2015, 5: 744.
41 LIN T L, PAN Y J, HSIEH P F, et al. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae[J]. Sci Rep, 2016, 6: 31644.
42 ZHOU Y, TANG Y, FU P, et al. The type I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumonia[J]. Emerg Microbes Infect, 2020, 9(1): 1011-1022.
43 ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12): 5429-5433.
44 SHMAKOV S A, SITNIK V, MAKAROVA K S, et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes[J]. mBio, 2017, 8(5): e01397-e01317.
45 DATSENKO K A, POUGACH K, TIKHONOV A, et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system[J]. Nat Commun, 2012, 3: 945.
46 MAKAROVA K S, WOLF Y I, KOONIN E V. The basic building blocks and evolution of CRISPR-CAS systems[J]. Biochem Soc Trans, 2013, 41(6): 1392-1400.
47 SHMAKOV S, SAVITSKAYA E, SEMENOVA E, et al. Pervasive generation of oppositely oriented spacers during CRISPR adaptation[J]. Nucleic Acids Res, 2014, 42(9): 5907-5916.
48 DíEZ-VILLASE?OR C, GUZMáN N M, ALMENDROS C, et al. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli[J]. RNA Biol, 2013, 10(5): 792-802.
49 KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37: 67-78.
50 MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
51 YOSEF I, GOREN M G, QIMRON U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli[J]. Nucleic Acids Res, 2012, 40(12): 5569-5576.
52 DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607.
53 HAURWITZ R E, JINEK M, WIEDENHEFT B, et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease[J]. Science, 2010, 329(5997): 1355-1358.
54 BROUNS S J J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964.
55 GARNEAU J E, DUPUIS M è, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71.
56 HALE C R, ZHAO P, OLSON S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell, 2009, 139(5): 945-956.
57 WESTRA E R, VAN ERP P B G, KüNNE T, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3[J]. Mol Cell, 2012, 46(5): 595-605.
58 DEVEAU H, BARRANGOU R, GARNEAU J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4): 1390-1400.
59 MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843-1845.
60 MOJICA F J M, DíEZ-VILLASE?OR C, GARCíA-MARTíNEZ J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology (Reading), 2009, 155(Pt 3): 733-740.
61 SWARTS D C, MOSTERD C, VAN PASSEL M W J, et al. CRISPR interference directs strand specific spacer acquisition[J]. PLoS One, 2012, 7(4): e35888.
62 BURSTEIN D, SUN C L, BROWN C T, et al. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems[J]. Nat Commun, 2016, 7: 10613.
63 MULEPATI S, BAILEY S. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3)[J]. J Biol Chem, 2011, 286(36): 31896-31903.
64 MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
65 CADY K C, O'TOOLE G A. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the csy and Cas3 proteins[J]. J Bacteriol, 2011, 193(14): 3433-3445.
66 GESNER E M, SCHELLENBERG M J, GARSIDE E L, et al. Recognition and maturation of effector RNAs in a CRISPR interference pathway[J]. Nat Struct Mol Biol, 2011, 18(6): 688-692.
67 HOCHSTRASSER M L, TAYLOR D W, BHAT P, et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference[J]. Proc Natl Acad Sci USA, 2014, 111(18): 6618-6623.
68 SASHITAL D G, WIEDENHEFT B, DOUDNA J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Mol Cell, 2012, 46(5): 606-615.
69 CHARPENTIER E, RICHTER H, VAN DER OOST J, et al. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity[J]. FEMS Microbiol Rev, 2015, 39(3): 428-441.
70 SHEN J T, LV L, WANG X D, et al. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes[J]. J Basic Microbiol, 2017, 57(4): 325-336.
71 MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2): 67-83.
72 RUSSEL J, PINILLA-REDONDO R, MAYO-MU?OZ D, et al. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-cas loci[J]. CRISPR J, 2020, 3(6): 462-469.
73 ZHANG F, ZHAO S J, REN C Y, et al. CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions[J]. Commun Biol, 2018, 1: 180.
74 DíEZ-VILLASE?OR C, ALMENDROS C, GARCíA-MARTíNEZ J, et al. Diversity of CRISPR loci in Escherichia coli[J]. Microbiology (Reading), 2010, 156(5): 1351-1361.
75 HAYES R P, XIAO Y B, DING F, et al. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli[J]. Nature, 2016, 530(7591): 499-503.
76 PINILLA-REDONDO R, MAYO-MU?OZ D, RUSSEL J, et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids[J]. Nucleic Acids Res, 2020, 48(4): 2000-2012.
77 STERN A, KEREN L, WURTZEL O, et al. Self-targeting by CRISPR: gene regulation or autoimmunity? [J]. Trends Genet, 2010, 26(8): 335-340.
78 GOLDBERG G W, JIANG W Y, BIKARD D, et al. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting[J]. Nature, 2014, 514(7524): 633-637.
79 WESTRA E R, BUCKLING A, FINERAN P C. CRISPR-Cas systems: beyond adaptive immunity[J]. Nat Rev Microbiol, 2014, 12(5): 317-326.
80 LABRIE S J, SAMSON J E, MOINEAU S. Bacteriophage resistance mechanisms[J]. Nat Rev Microbiol, 2010, 8(5): 317-327.
81 SAMSON J E, MAGADáN A H, SABRI M, et al. Revenge of the phages: defeating bacterial defences[J]. Nat Rev Microbiol, 2013, 11(10): 675-687.
82 JACKSON S A, BIRKHOLZ N, MALONE L M, et al. Imprecise spacer acquisition generates CRISPR-cas immune diversity through primed adaptation[J]. Cell Host Microbe, 2019, 25(2): 250-260.e4.
83 BONDY-DENOMY J, DAVIDSON A R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness[J]. J Microbiol, 2014, 52(3): 235-242.
84 FEINER R, ARGOV T, RABINOVICH L, et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J]. Nat Rev Microbiol, 2015, 13(10): 641-650.
85 BONDY-DENOMY J, PAWLUK A, MAXWELL K L, et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432): 429-432.
86 PAWLUK A, BONDY-DENOMY J, CHEUNG V H W, et al. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa[J]. mBio, 2014, 5(2): e00896.
87 LI Y P, BONDY-DENOMY J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors[J]. Cell Host Microbe, 2021, 29(5): 704-714.
88 JIA N, PATEL D J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins[J]. Nat Rev Mol Cell Biol, 2021, 22(8): 563-579.
89 DAVIDSON A R, LU W T, STANLEY S Y, et al. Anti-CRISPRs: protein inhibitors of CRISPR-cas systems[J]. Annu Rev Biochem, 2020, 89: 309-332.
90 SHIVRAM H, CRESS B F, KNOTT G J, et al. Controlling and enhancing CRISPR systems[J]. Nat Chem Biol, 2021, 17(1): 10-19.
91 SHEHREEN S, CHYOU T Y, FINERAN P C, et al. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1772): 20180384.
92 WIEGAND T, KARAMBELKAR S, BONDY-DENOMY J, et al. Structures and strategies of anti-CRISPR-mediated immune suppression[J]. Annu Rev Microbiol, 2020, 74: 21-37.
93 PAWLUK A, SHAH M, MEJDANI M, et al. Disabling a type I-E CRISPR-cas nuclease with a bacteriophage-encoded anti-CRISPR protein[J]. mBio, 2017, 8(6): e01751-e01717.
94 ZHANG H, LI Z, DACZKOWSKI C M, et al. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins[J]. Cell Host Microbe, 2019, 25(6): 815-826.e4.
95 KNOTT G J, THORNTON B W, LOBBA M J, et al. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a[J]. Nat Struct Mol Biol, 2019, 26(4): 315-321.
96 BONDY-DENOMY J, GARCIA B, STRUM S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins[J]. Nature, 2015, 526(7571): 136-139.
97 ROLLINS M F, CHOWDHURY S, CARTER J, et al. Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry[J]. Mol Cell, 2019, 74(1): 132-142.e5.
98 WANG X F, YAO D Q, XU J G, et al. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3[J]. Nat Struct Mol Biol, 2016, 23(9): 868-870.
99 WANG J Y, MA J, CHENG Z, et al. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses[J]. Cell Res, 2016, 26(10): 1165-1168.
100 ATHUKORALAGE J S, MCMAHON S A, ZHANG C Y, et al. An anti-CRISPR viral ring nuclease subverts type Ⅲ CRISPR immunity[J]. Nature, 2020, 577(7791): 572-575.
101 MARINO N D, ZHANG J Y, BORGES A L, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors[J]. Science, 2018, 362(6411): 240-242.
102 PAWLUK A, AMRANI N, ZHANG Y, et al. Naturally occurring off-switches for CRISPR-Cas9[J]. Cell, 2016, 167(7): 1829-1838.e9.
103 BISWAS A, GAGNON J N, BROUNS S J J, et al. CRISPRTarget [J]. RNA Biology, 2013, 10(5): 817-27.
104 PINILLA-REDONDO R, SHEHREEN S, MARINO ND, et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements[J]. Nat Commun, 2020, 11(1): 5652.
105 WYRES K L, WICK R R, JUDD L M, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae[J]. PLoS Genet, 2019, 15(4): e1008114.
106 WATTERS K E, FELLMANN C, BAI H B, et al. Systematic discovery of natural CRISPR-Cas12a inhibitors[J]. Science, 2018, 362(6411): 236-239.
107 BARRANGOU R, HORVATH P. CRISPR: new horizons in phage resistance and strain identification[J]. Annu Rev Food Sci Technol, 2012, 3: 143-162.
108 TAN D M, ZHANG Y Y, CHENG M J, et al. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages[J]. Viruses, 2019, 11(11): 1080.
Outlines

/