Journal of Shanghai Jiao Tong University (Medical Science) >
Advances in Helicobacter pylori infection involved in gastric cancer metastasis
Received date: 2022-09-01
Accepted date: 2023-03-15
Online published: 2023-04-28
Supported by
Shanghai Pujiang Program(2019PJD034)
Gastric cancer is a common cancer of the gastrointestinal tract, highly occurring in East and Southeast Asian. Roughly more than 50% of the population is exposed to Helicobacter pylori (H. pylori) infection worldwide. H. pylori infection is one of the risk factors for gastric cancer and is strongly associated with the development of gastric cancer. The association between H. pylori infection and metastasis of gastric cancer is still inconclusive but has made some progress. For one thing, H. pylori is colonized in the gastric mucosa. The effect of its key virulence factors, VacA and CagA proteins, keeps H. pylori alive in the stomach for a long time and makes it possible for H. pylori to promote the proliferation, epithelial-mesenchymal transition and metastasis of gastric cancer cells. For another, the tumor microenvironment is the site of interaction between host immune system and tumor. By interfering with the effect of tumor cells and immune cells, enhancing the formation of an acidic and hypoxic environment and altering the differentiation of cells in the tumor microenvironment, H. pylori infection can strengthen immune escape and then facilitate the metastasis of gastric cancer. H. pylori infection has become a global public health problem, and its influence on the evolution of gastric cancer cannot be disregarded. The review addresses the correlation between H. pylori infection and gastric cancer metastasis through both key virulence factors and tumor microenvironment. It will provide reference for clinical and basic research in gastric cancer.
Rong XIAO , Shuangfen TAO , Siyu CHEN , Leizhen ZHENG , Meiling ZHU . Advances in Helicobacter pylori infection involved in gastric cancer metastasis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023 , 43(4) : 495 -499 . DOI: 10.3969/j.issn.1674-8115.2023.04.013
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | THRIFT A P, EL-SERAG H B. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 534-542. |
3 | JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279. |
4 | ANSARI S, YAMAOKA Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity[J]. Toxins, 2019, 11(11): 677. |
5 | YANG Y H, SHU X, XIE C. An overview of autophagy in Helicobacter pylori infection and related gastric cancer[J]. Front Cell Infect Microbiol, 2022, 12: 847716. |
6 | HOOI J K Y, LAI W Y, NG W K, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2): 420-429. |
7 | WARREN J R, MARSHALL B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis[J]. Lancet, 1983, 1(8336): 1273-1275. |
8 | MAIXNER F, KRAUSE-KYORA B, TURAEV D, et al. The 5300-year-old Helicobacter pylori genome of the iceman[J]. Science, 2016, 351(6269): 162-165. |
9 | HUANG Y, WANG Q L, CHENG D D, et al. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori[J]. Front Cell Infect Microbiol, 2016, 6: 159. |
10 | ILVER D, ARNQVIST A, OGREN J, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging[J]. Science, 1998, 279(5349): 373-377. |
11 | K?NIGER V, HOLSTEN L, HARRISON U, et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA[J]. Nat Microbiol, 2016, 2: 16188. |
12 | YAMAOKA Y, KITA M, KODAMA T, et al. Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation[J]. Gastroenterology, 2002, 123(6): 1992-2004. |
13 | MAHDAVI J, SONDéN B, HURTIG M, et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation[J]. Science, 2002, 297(5581): 573-578. |
14 | WANG F, MENG W, WANG B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer[J]. Cancer Lett, 2014, 345(2): 196-202. |
15 | AMIEVA M, PEEK R M Jr. Pathobiology of Helicobacter pylori-induced gastric cancer[J]. Gastroenterology, 2016, 150(1): 64-78. |
16 | NEJATI S, KARKHAH A, DARVISH H, et al. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders[J]. Microb Pathog, 2018, 117: 43-48. |
17 | CAPURRO M I, GREENFIELD L K, PRASHAR A, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1[J]. Nat Microbiol, 2019, 4(8): 1411-1423. |
18 | CHMIELA M, KARWOWSKA Z, GONCIARZ W, et al. Host pathogen interactions in Helicobacter pylori related gastric cancer[J]. World J Gastroenterol, 2017, 23(9): 1521-1540. |
19 | TAKAHASHI-KANEMITSU A, KNIGHT C T, HATAKEYAMA M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis[J]. Cell Mol Immunol, 2020, 17(1): 50-63. |
20 | COVER T L. Helicobacter pylori diversity and gastric cancer risk[J]. mBio, 2016, 7(1): e01869-e01815. |
21 | NISHIKAWA H, HATAKEYAMA M. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein[J]. Toxins, 2017, 9(4): 136. |
22 | HATAKEYAMA M. SagA of CagA in Helicobacter pylori pathogenesis[J]. Curr Opin Microbiol, 2008, 11(1): 30-37. |
23 | STEIN M, RAPPUOLI R, COVACCI A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation[J]. Proc Natl Acad Sci USA, 2000, 97(3): 1263-1268. |
24 | MUELLER D, TEGTMEYER N, BRANDT S, et al. C-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains[J]. J Clin Invest, 2012, 122(4): 1553-1566. |
25 | LIU B, LI X K, SUN F Z, et al. HP-CagA+ regulates the expression of CDK4/CyclinD1 via reg3 to change cell cycle and promote cell proliferation[J]. Int J Mol Sci, 2019, 21(1): 224. |
26 | SEGAL E D, CHA J, LO J, et al. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori[J]. Proc Natl Acad Sci USA, 1999, 96(25): 14559-14564. |
27 | BESSèDE E, STAEDEL C, ACU?A AMADOR L A, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes[J]. Oncogene, 2014, 33(32): 4123-4131. |
28 | NAGY T A, FREY M R, YAN F, et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling[J]. J Infect Dis, 2009, 199(5): 641-651. |
29 | HIGASHI H, TSUTSUMI R, MUTO S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein[J]. Science, 2002, 295(5555): 683-686. |
30 | TENG Y S, CHEN W Y, YAN Z B, et al. L-plastin promotes gastric cancer growth and metastasis in a Helicobacter pylori cagA-ERK-SP1-dependent manner[J]. Mol Cancer Res, 2021, 19(6): 968-978. |
31 | YANG F H, XU Y G, LIU C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12. |
32 | JIANG X J, WANG J, DENG X Y, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10. |
33 | DEBERARDINIS R J. Tumor microenvironment, metabolism, and immunotherapy[J]. N Engl J Med, 2020, 382(9): 869-871. |
34 | ZHAO L, LIU Y Y, ZHANG S M, et al. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer[J]. Cell Death Dis, 2022, 13(4): 378. |
35 | SUN C, MEZZADRA R, SCHUMACHER T N. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. |
36 | DAS S, SUAREZ G, BESWICK E J, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection[J]. J Immunol, 2006, 176(5): 3000-3009. |
37 | DENG R Y, ZHENG H L, CAI H Z, et al. Effects of Helicobacter pylori on tumor microenvironment and immunotherapy responses[J]. Front Immunol, 2022, 13: 923477. |
38 | BAJ J, KORONA-G?OWNIAK I, FORMA A, et al. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer[J]. Cells, 2020, 9(4): 1055. |
39 | ZAVROS Y, MERCHANT J L. The immune microenvironment in gastric adenocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 451-467. |
40 | BAJ J, BRZOZOWSKA K, FORMA A, et al. Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis[J]. Int J Mol Sci, 2020, 21(7): 2544. |
41 | LEE K, HWANG H, NAM K T. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer[J]. Gut Liver, 2014, 8(2): 131-139. |
42 | HOLOKAI L, CHAKRABARTI J, BRODA T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection[J]. PLoS Pathog, 2019, 15(1): e1007468. |
/
〈 |
|
〉 |