Journal of Shanghai Jiao Tong University (Medical Science) >
Research progress in biological activities and mechanisms of theabrownin
Received date: 2023-02-14
Accepted date: 2023-05-30
Online published: 2023-06-28
Supported by
National Natural Science Foundation of China(82170833)
Tea is beneficial to human health, which is rich in tea pigments with important biological activities. Theabrownin, derived from theaflavins and thearubigins by oxidative polymerization, mainly distributes in semi-fermented oolong tea, and completely fermented black tea and dark tea. As a kind of macromolecular substance, theabrownin cannot be directly absorbed by the gut, but it can directly interact with intestinal microbiota to regulate and maintain the homeostasis of intestinal flora. Theabrownin has multiple physiological roles via modulating the gut microbiota, including inhibiting hepatic cholesterol production, promoting the catabolism of cholesterol and triglyceride, and promoting energy metabolism in adipose tissues, thereby improving lipid metabolism. Theabrownin can also directly influence the gut absorption of glucose to improve carbohydrate metabolism and maintain blood glucose homeostasis. Theabrownin plays an anti-tumor role by inducing apoptosis and regulating gene expression in tumor cells. Theabrownin also plays an anti-inflammatory role via participating in the regulation of the immune cell differentiation and the levels of inflammatory factors. This review summarizes the formation process, the extraction procedures, and the chemical structure of theabrownin, and reviews the effects and mechanisms of theabrownin on intestinal microbiota, lipid metabolism, blood glucose homeostasis, cancer and inflammation.
Key words: theabrownin; intestinal microbiota; metabolic disease; antitumor; anti-inflammatory
Jieyi WANG , Dan ZHENG , Xiaojiao ZHENG , Wei JIA , Aihua ZHAO . Research progress in biological activities and mechanisms of theabrownin[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023 , 43(6) : 768 -774 . DOI: 10.3969/j.issn.1674-8115.2023.06.014
1 | 孙芝杨. 世界三大饮料与“苦味”物质[J]. 饮料工业, 2009, 12(1): 8-9. |
1 | SUN Z Y. The world's 3 most popular beverages and bitter substances[J]. Beverage Industry, 2009, 12(1): 8-9. |
2 | 朱永兴, 姜爱芹. 咖啡、可可和茶的全球发展比较研究[J]. 茶叶科学, 2010, 30(6): 493-500. |
2 | ZHU Y X, JIANG A Q. Comparation on the development of coffee, cocoa and tea of the world[J]. Journal of Tea Science, 2010, 30(6): 493-500. |
3 | 杨佳怡, 连宇晗, 胡向东, 等. “品”茶: 浅谈茶叶中的有机化学成分[J]. 大学化学, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055. |
3 | YANG J Y, LIAN Y H, HU X D, et al. Sipping tea: general introduction of the organic components in tea[J]. University Chemistry, 2022, 37(9). DOI: 10.3866/PKU.DXHX202204055. |
4 | 吴德亮. 普洱藏茶[M]. 武汉: 华中科技大学出版社, 2019: 225-235. |
4 | WU D L. Pu-erh tibet tea[M]. Wuhan: Huazhong University of Science & Technology Press, 2019: 225-235. |
5 | WANG J Y, ZHENG D, HUANG F J, et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Front Pharmacol, 2022, 13: 875549. |
6 | HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971. |
7 | ZHEN Q C, LIANG Q J, WANG H C, et al. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice[J]. Front Endocrinol (Lausanne), 2023, 14: 1118925. |
8 | LEUNG H K M, LO E K K, EL-NEZAMI H. Theabrownin alleviates colorectal tumorigenesis in murine AOM/DSS model via PI3K/Akt/mTOR pathway suppression and gut microbiota modulation[J]. Antioxidants (Basel), 2022, 11(9): 1716. |
9 | JIA W, RAJANI C, LV A P, et al. Pu-erh tea: a review of a healthful brew[J]. J Tradit Chin Med Sci, 2022, 9(2): 95-99. |
10 | WANG Q P, GONG J S, CHISTI Y, et al. Production of theabrownins using a crude fungal enzyme concentrate[J]. J Biotechnol, 2016, 231: 250-259. |
11 | XU J Y, WANG W Y, LIANG X, et al. Inhibitory effect of the theabrownin and tea polysaccharide extracts of dark tea on lipase[J]. J Phys: Conf Ser, 2020, 1549: 032048. |
12 | MA W J, SHI Y L, YANG G Z, et al. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J]. Food Chem, 2022, 375: 131877. |
13 | LIN F J, WEI X L, LIU H Y, et al. State-of-the-art review of dark tea: from chemistry to health benefits[J]. Trends Food Sci Technol, 2021, 109: 126-138. |
14 | XU J, WEI Y, HUANG Y, et al. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments[J]. Crit Rev Food Sci Nutr, 2022. DOI: 10.1080/10408398.2022.2093327. |
15 | GONG J S, ZHANG Q, PENG C X, et al. Curie-point pyrolysis-gas chromatography-mass spectroscopic analysis of theabrownins from fermented Zijuan tea[J]. J Anal Appl Pyrolysis, 2012, 97: 171-180. |
16 | 孟宪钰. 普洱熟茶加成儿茶素及茶褐素化学研究[D]. 昆明: 昆明理工大学, 2019. |
16 | MENG X Y. Chemical research on addition catechins and theabrownins of Pu-erh tea[D]. Kunming: Kunming University of Science and Technology, 2019. |
17 | 张云天, 姚晓玲, 鲁江, 等. 黑茶茶褐素的研究现状及进展[J]. 食品工业科技, 2017, 38(11): 395-399. |
17 | ZHANG Y T, YAO X L, LU J, et al. Current research status and progress of the theabrownine in dark tea[J]. Science and Technology of Food Industry, 2017, 38(11): 395-399. |
18 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
19 | 许军军, 蔡吓明, 林妹, 等. 益生菌对2型糖尿病患者降低炎症反应及改善糖代谢的研究[J]. 糖尿病新世界, 2022, 25(19): 126-129. |
19 | XU J J, CAI X M, LIN M, et al. Study of probiotics on reducing inflammatory reaction and improving glucose metabolism in patients with type 2 diabetes mellitus[J]. Diabetes New World, 2022, 25(19): 126-129. |
20 | YUE S J, SHAN B, PENG C X, et al. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J]. Food Funct, 2022, 13(4): 1921-1940. |
21 | KUANG J L, ZHENG X J, HUANG F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling[J]. Metabolites, 2020, 10(11): 475. |
22 | TAKEDA R, FURUNO Y, IMAI S, et al. Effect of powdered beverages containing Pu-erh tea extract on postprandial blood glucose levels[J]. Funct Foods Health Dis, 2019, 9(8): 532. |
23 | YUE S J, ZHAO D, PENG C X, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J]. Food Funct, 2019, 10(11): 7063-7080. |
24 | HOU Y, ZHANG Z F, CUI Y S, et al. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions[J]. Food Res Int, 2022, 162(Pt B): 112176. |
25 | LI H Y, HUANG S Y, XIONG R G, et al. Anti-obesity effect of theabrownin from dark tea in C57BL/6J mice fed a high-fat diet by metabolic profiles through gut microbiota using untargeted metabolomics[J]. Foods, 2022, 11(19): 3000. |
26 | 蒋慧颖, 马玉仙, 曾文治, 等. 茶黄素、茶红素与茶褐素对高脂饮食大鼠肠道菌群的影响[J]. 食品工业科技, 2018, 39(20): 274-279, 351. |
26 | JIANG H Y, MA Y X, ZENG W Z, et al. Effects of theaflavins, thearubigins and theabrownine on intestinal flora in rats fed with high-fat diet[J]. Science and Technology of Food Industry, 2018, 39(20): 274-279, 351. |
27 | LUO J, YANG H Y, SONG B L. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. |
28 | GONG J S, PENG C X, CHEN T, et al. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action[J]. J Food Sci, 2010, 75(6): H182-H189. |
29 | JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128. |
30 | PENG C X, WANG Q P, LIU H R, et al. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS[J]. J Anal Appl Pyrolysis, 2013, 104: 226-233. |
31 | WANG Y, ZHAO A Q, DU H P, et al. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity[J]. J Agric Food Chem, 2021, 69(40): 11900-11911. |
32 | LI Y Z, TENG D, SHI X G, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997. |
33 | 徐湘婷, 王鹏, 罗绍忠, 等. 普洱熟茶茶褐素对2型糖尿病小鼠降糖作用研究[J]. 中国民族民间医药, 2015, 24(20): 9-10. |
33 | XU X T, WANG P, LUO S Z, et al. Hypoglycemic effects of fermented puer tea extracts-theabrownins in mice of type 2 diabetes[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2015, 24(20): 9-10. |
34 | HAO W X, WANG M, LV M X. The inhibitory effects of Yixing black tea extracts on α-glucosidase[J]. J Food Biochem, 2017, 41(1): e12269. |
35 | WANG Y W, ZHANG M Y, ZHANG Z Z, et al. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity[J]. J Sci Food Agric, 2017, 97(15): 5100-5106. |
36 | 聂坤伦, 何利, 速晓娟, 等. 雅安藏茶抑制α-淀粉酶的活性级分筛选与评价[J]. 食品科学, 2013, 34(9): 74-79. |
36 | NIE K L, HE L, SU X J, et al. Screening and evaluation of α-amylase-inhibiting fractions extracted from Ya'an Tibetan tea[J]. Food Science, 2013, 34(9): 74-79. |
37 | 赵丹, 张婷婷, 彭春秀, 等. 普洱茶茶褐素对高糖饮食大鼠糖脂代谢关键酶及组织切片的影响[J]. 食品工业科技, 2019, 40(15): 298-303. |
37 | ZHAO D, ZHANG T T, PENG C X, et al. Effects of theabrowins extracted from Pu'er tea on key enzymes and tissue sections of glycolipid metabolism in rats with high sugar diet[J]. Science and Technology of Food Industry, 2019, 40(15): 298-303. |
38 | WU E K, ZHANG T T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. Eur J Nutr, 2020, 59(5): 1937-1950. |
39 | YANG X H, LIU Z H, HUANG J N, et al. The effect of fraction 5 of theabrownin from Pu-erh tea on 3T3-L1 preadipocyte proliferation and differentiation[J]. J Food Nutr Res, 2014, 2(12): 1000-1006. |
40 | WANG Y Y, YUAN Y, WANG C P, et al. Theabrownins produced via chemical oxidation of tea polyphenols inhibit human lung cancer cells in vivo and in vitro by suppressing the PI3K/AKT/mTOR pathway activation and promoting autophagy[J]. Front Nutr, 2022, 9: 858261. |
41 | ZHOU L, WU F F, JIN W D, et al. Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism[J]. Front Pharmacol, 2017, 8: 75. |
42 | WU F F, ZHOU L, JIN W D, et al. Anti-proliferative and apoptosis-inducing effect of theabrownin against non-small cell lung adenocarcinoma A549 cells[J]. Front Pharmacol, 2016, 7: 465. |
43 | JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 670-681. |
44 | XU J A, YAN B, ZHANG L, et al. Theabrownin induces apoptosis and tumor inhibition of hepatocellular carcinoma Huh7 cells through ASK1-JNK-c-Jun pathway[J]. Onco Targets Ther, 2020, 13: 8977-8987. |
45 | XU J A, XIAO X J, YAN B, et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression[J]. Cancer Cell Int, 2022, 22(1): 39. |
46 | BILLER L H, SCHRAG D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. |
47 | CHEN X Q, HU Y X, WANG B J, et al. Characterization of theabrownins prepared from tea polyphenols by enzymatic and chemical oxidation and their inhibitory effect on colon cancer cells[J]. Front Nutr, 2022, 9: 849728. |
48 | LI T, YAN B, XIAO X J, et al. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin[J]. FASEB J, 2022, 36(8): e22426. |
49 | FU J Y, JIANG C X, WU M Y, et al. Theabrownin induces cell apoptosis and cell cycle arrest of oligodendroglioma and astrocytoma in different pathways[J]. Front Pharmacol, 2021, 12: 664003. |
50 | JIN W D, GU C Q, ZHOU L, et al. Theabrownin inhibits the cytoskeleton?dependent cell cycle, migration and invasion of human osteosarcoma cells through NF?κB pathway?related mechanisms[J]. Oncol Rep, 2020, 44(6): 2621-2633. |
51 | JIN W D, ZHOU L, YAN B, et al. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway[J]. J Cell Mol Med, 2018, 22(9): 4423-4436. |
52 | ZHAO H, ZHANG M, ZHAO L, et al. Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea[J]. Int J Mol Sci, 2011, 12(3): 1862-1875. |
53 | 许靖逸, 李祥龙, 李解, 等. 雅安藏茶茶褐素对60Co γ辐射损伤的防护作用[J]. 核技术, 2017, 40(4): 040301. |
53 | XU J Y, LI X L, LI J, et al. Protective effect of extracted theabrownines from Ya'an Tibetan tea on radiation damage in mice caused by 60Co γ-ray[J]. Nuclear Techniques, 2017, 40(4): 040301. |
54 | YANG W Q, REN D Y, SHAO H J, et al. Theabrownin from Fu brick tea improves ulcerative colitis by shaping the gut microbiota and modulating the tryptophan metabolism[J]. J Agric Food Chem, 2023, 71(6): 2898-2913. |
55 | HU S S, LI S, LIU Y, et al. Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. J Agric Food Chem, 2021, 69(36): 10592-10605. |
56 | 李春磊. 普洱茶水提物抗炎功效研究[D]. 长春: 长春理工大学, 2012. |
56 | LI C L. Effect of Pu-erh tea extracts on anti-flammation[D]. Changchun: Changchun University of Science and Technology, 2012. |
57 | LEI S W, ZHANG Z F, XIE G H, et al. Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose[J]. J Funct Foods, 2022, 89: 104941. |
58 | 钟振威, 卢青, 丁世芳. 茶褐素对高脂喂养ApoE-/-小鼠主动脉粥样硬化作用及机制的研究[J]. 华南国防医学杂志, 2020, 34(3): 151-155. |
58 | ZHONG Z W, LU Q, DING S F. Study the effects and mechanism of theabrownin on aortic atherosclerosis in ApoE-/- mice fed with high-fat diet[J]. Military Medical Journal of South China, 2020, 34(3): 151-155. |
59 | ZHANG L, SHAO W F, YUAN L F, et al. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM)[J]. Food Chem, 2012, 135(4): 2222-2228. |
/
〈 |
|
〉 |