Review

Clinical advances in antibody-drug conjugates for hematological malignancies

  • Sijie TANG ,
  • Jianqing MI
Expand
  • Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
MI Jianqing, E-mail: jianqingmi@shsmu.edu.cn.

Received date: 2024-01-24

  Accepted date: 2024-02-08

  Online published: 2024-12-24

Supported by

Sino-German Center Project(M-0337);Research Plan Project of Science and Technology Commission of Shanghai Municipality(23141903000)

Abstract

An antibody-drug conjugate (ADC) is a targeted therapeutic drug composed of a monoclonal antibody linked to a small-molecule cytotoxic drug via a linker. Once administered, ADCs bind to tumor-specific antigens, forming ADC-antigen complexes, which are internalized through endocytosis. The linkers are then cleaved via endosomal-lysosome pathway and the cytotoxic drug is released, which induces apoptosis in the target cells. ADCs combine the advantages of monoclonal antibody drugs and cytotoxic drugs. They are able to reduce damage to normal cells while killing target cells, thus exhibiting higher anti-tumor efficiency. As the treatment of hematological malignancies gradually advances into the era of targeted immunotherapy, ADCs, as one of the hot spots, have shown broad prospects and also face many challenges in drug development and clinical application. Currently marketed ADCs in China include brentuximab vedotin (anti-CD30), inotuzumab ozogamicin (anti-CD22) and polatuzumab vedotin (anti-CD79B), while those marketed abroad include gemtuzumab ozogamicin (anti-CD33) and loncastuximab tesirine (anti-CD19), all demonstrating good efficacy and safety in clinical practice. Additionally, ADCs targeting different antigens such as CD123, CD19, CD20, receptor tyrosine kinase-like orphan receptor 1 (ROR1), and CD38 are undergoing clinical studies. Globally, there are over a hundred ADCs in development, and it is hoped that more breakthroughs will be achieved in the future to further optimize the treatment strategies for hematologic malignancies.

Cite this article

Sijie TANG , Jianqing MI . Clinical advances in antibody-drug conjugates for hematological malignancies[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024 , 44(12) : 1607 -1614 . DOI: 10.3969/j.issn.1674-8115.2024.12.015

References

1 FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93.
2 JIN Y, SCHLADETSCH M A, HUANG X, et al. Stepping forward in antibody-drug conjugate development[J]. Pharmacol Ther, 2022, 229: 107917.
3 YU J F, SONG Y P, TIAN W Z. How to select IgG subclasses in developing anti-tumor therapeutic antibodies[J]. J Hematol Oncol, 2020, 13(1): 45.
4 DEAN A Q, LUO S, TWOMEY J D, et al. Targeting cancer with antibody-drug conjugates: promises and challenges[J]. mAbs, 2021, 13(1): 1951427.
5 DUMONTET C, REICHERT J M, SENTER P D, et al. Antibody-drug conjugates come of age in oncology[J]. Nat Rev Drug Discov, 2023, 22(8): 641-661.
6 STAUDACHER A H, BROWN M P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required?[J]. Br J Cancer, 2017, 117(12): 1736-1742.
7 CASTAIGNE S, PAUTAS C, TERRé C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study[J]. Lancet, 2012, 379(9825): 1508-1516.
8 HILLS R K, CASTAIGNE S, APPELBAUM F R, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials[J]. Lancet Oncol, 2014, 15(9): 986-996.
9 STEIN E M, WALTER R B, ERBA H P, et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia[J]. Blood, 2018, 131(4): 387-396.
10 DAVER N G, MONTESINOS P, DEANGELO D J, et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or blastic plasmacytoid dendritic cell neoplasm (BPDCN)[J]. Blood, 2019, 134(Suppl 1): 734.
11 NAVAL D, AHMED A, PAU M, et al. Safety and efficacy from a phase 1b/2 study of IMGN632 in combination with azacitidine and venetoclax for patients with CD123-positive acute myeloid leukemia[J]. Blood, 2021, 138(S1): 372.
12 NAVAL D, PAU M, AHMED A, et al. Broad activity for the pivekimab sunirine (PVEK, IMGN632), azacitidine, and venetoclax triplet in high-risk patients with relapsed/refractory acute myeloid leukemia (AML)[J]. Blood, 2022, 140(S1): 145-149.
13 KANTARJIAN H M, DEANGELO D J, STELLJES M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia[J]. N Engl J Med, 2016, 375(8): 740-753.
14 KANTARJIAN H M, DEANGELO D J, STELLJES M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study[J]. Cancer, 2019, 125(14): 2474-2487.
15 W?SCH R, KONDAKCI M, SCHOLL S, et al. Inotuzumab ozogamicin as induction therapy for patients older than 55 years with Philadelphia chromosome-negative B-precursor ALL[J]. J Clin Oncol, 2024, 42(3): 273-282.
16 KANTARJIAN H, RAVANDI F, SHORT N J, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19(2): 240-248.
17 JABBOUR E, SHORT N J, SENAPATI J, et al. Mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in the subgroup of older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: long-term results of an open-label phase 2 trial[J]. Lancet Haematol, 2023, 10(6): e433-e444.
18 JABBOUR E, HADDAD F G, SHORT N J, et al. Phase 2 study of inotuzumab ozogamicin for measurable residual disease in acute lymphoblastic leukemia in remission[J]. Blood, 2024, 143(5): 417-421.
19 AUJLA A, AUJLA R, LIU D L. Inotuzumab ozogamicin in clinical development for acute lymphoblastic leukemia and non-Hodgkin lymphoma[J]. Biomark Res, 2019, 7: 9.
20 HERRERA A F, PALMER J, MARTIN P, et al. Autologous stem-cell transplantation after second-line brentuximab vedotin in relapsed or refractory Hodgkin lymphoma[J]. Ann Oncol, 2018, 29(3): 724-730.
21 PRINCE H M, HUTCHINGS M, DOMINGO-DOMENECH E, et al. Anti-CD30 antibody-drug conjugate therapy in lymphoma: current knowledge, remaining controversies, and future perspectives[J]. Ann Hematol, 2023, 102(1): 13-29.
22 Brentuximab vedotin with chemotherapy for stage Ⅲ or Ⅳ Hodgkin's lymphoma[J]. N Engl J Med, 2018, 378(9): 878.
23 STRAUS D J, D?UGOSZ-DANECKA M, CONNORS J M, et al. Brentuximab vedotin with chemotherapy for stage Ⅲ or Ⅳ classical Hodgkin lymphoma (ECHELON-1): 5-year update of an international, open-label, randomised, phase 3 trial[J]. Lancet Haematol, 2021, 8(6): e410-e421.
24 ANSELL S M, RADFORD J, CONNORS J M, et al. Overall survival with brentuximab vedotin in stage Ⅲ or Ⅳ Hodgkin's lymphoma[J]. N Engl J Med, 2022, 387(4): 310-320.
25 HOPPE R T, ADVANI R H, AI W Z, et al. NCCN Guidelines? insights: Hodgkin lymphoma, version 2.2022[J]. J Natl Compr Cancer Netw, 2022, 20(4): 322-334.
26 MOSKOWITZ C H, NADEMANEE A, MASSZI T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2015, 385(9980): 1853-1862.
27 MOSKOWITZ C H, WALEWSKI J, NADEMANEE A, et al. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse[J]. Blood, 2018, 132(25): 2639-2642.
28 BARTLETT N L, CHEN R, FANALE M A, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies[J]. J Hematol Oncol, 2014, 7: 24.
29 HORWITZ S M, ANSELL S, AI W Z, et al. T-cell lymphomas, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(3): 285-308.
30 HORWITZ S, O'CONNOR O A, PRO B, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase Ⅲ study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma[J]. Ann Oncol, 2022, 33(3): 288-298.
31 SVOBODA J, BAIR S M, LANDSBURG D J, et al. Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas[J]. Haematologica, 2021, 106(6): 1705-1713.
32 PALANCA-WESSELS M C, CZUCZMAN M, SALLES G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study[J]. Lancet Oncol, 2015, 16(6): 704-715.
33 SEHN L H, HERRERA A F, FLOWERS C R, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma[J]. J Clin Oncol, 2020, 38(2): 155-165.
34 TILLY H, MORSCHHAUSER F, SEHN L H, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma[J]. N Engl J Med, 2022, 386(4): 351-363.
35 SONG Y Q, TILLY H, RAI S, et al. Polatuzumab vedotin in previously untreated DLBCL: an Asia subpopulation analysis from the phase 3 POLARIX trial[J]. Blood, 2023, 141(16): 1971-1981.
36 HERRERA A F, PATEL M R, BURKE J M, et al. Anti-CD79B antibody-drug conjugate DCDS0780A in patients with B-cell non-hodgkin lymphoma: phase 1 dose-escalation study[J]. Clin Cancer Res, 2022, 28(7): 1294-1301.
37 HAMADANI M, RADFORD J, CARLO-STELLA C, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma[J]. Blood, 2021, 137(19): 2634-2645.
38 CAIMI P F, AI W Z, ALDERUCCIO J P, et al. Loncastuximab tesirine in relapsed/refractory diffuse large B-cell lymphoma: long-term efficacy and safety from the phase Ⅱ LOTIS-2 study[J]. Haematologica, 2024, 109(4): 1184-1193.
39 DEPAUS J, WAGNER-JOHNSTON N, ZINZANI P L, et al. Clinical activity of loncastuximab tesirine plus ibrutinib in non-Hodgkin lymphoma: updated LOTIS 3 phase 1 results[J]. Hematol Oncol, 2021, 39(S2): 325-327.
40 KWIATEK M, GROSICKI S, JIMéNEZ J L, et al. POSTER: ABCL-515 updated results of the safety run-in of the phase 3 LOTIS-5 trial: novel combination of loncastuximab tesirine with rituximab (Lonca-R) versus immunochemotherapy in patients with R/R DLBCL[J]. Clin Lymphoma Myeloma Leuk, 2023, 23: S204.
41 HAMLIN P A, MUSTEATA V, PARK S I, et al. Safety and efficacy of engineered toxin body MT-3724 in relapsed or refractory B-cell non-Hodgkin's lymphomas and diffuse large B-cell lymphoma[J]. Cancer Res Commun, 2022, 2(5): 307-315.
42 LIN C Y, GALAL A, RIZZIERI D, et al. Combinatorial efficacy and toxicity of an engineered toxin body MT-3724 with gemcitabine and oxaliplatin in relapsed or refractory diffuse large B cell lymphoma[J]. Cancer Invest, 2023. DOI: 10.1080/07357907.2022.2162073.
43 WANG M, BARRIENTOS J C, FURMAN R R, et al. VLS-101, a ROR1-targeting antibody-drug conjugate, demonstrates a predictable safety profile and clinical efficacy in patients with heavily pretreated mantle cell lymphoma and diffuse large B-cell lymphoma[J]. Blood, 2020, 136(Suppl 1): 13-14.
44 PHILLIPS T, BARR P M, PARK S I, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma[J]. Invest New Drugs, 2019, 37(2): 297-306.
45 CHU Y R, ZHOU X X, WANG X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress[J]. J Hematol Oncol, 2021, 14(1): 88.
46 TRUDEL S, LENDVAI N, POPAT R, et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial[J]. Lancet Oncol, 2018, 19(12): 1641-1653.
47 LONIAL S, LEE H C, BADROS A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(2): 207-221.
48 DIMOPOULOS M A, HUNGRIA V T M, RADINOFF A, et al. Efficacy and safety of single-agent belantamab mafodotin versus pomalidomide plus low-dose dexamethasone in patients with relapsed or refractory multiple myeloma (DREAMM-3): a phase 3, open-label, randomised study[J]. Lancet Haematol, 2023, 10(10): e801-e812.
49 HUNGRIA V, ROBAK P, HUS M, et al. Belantamab mafodotin, bortezomib, and dexamethasone for multiple myeloma[J]. N Engl J Med, 2024, 391(5): 393-407.
50 DIMOPOULOS M A, BEKSAC M, POUR L, et al. Belantamab mafodotin, pomalidomide, and dexamethasone in multiple myeloma[J]. N Engl J Med, 2024, 391(5): 408-421.
51 LEE H C, RAJE N S, LANDGREN O, et al. Phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma[J]. Leukemia, 2021, 35(1): 255-258.
52 CHAKRABORTY R, YAN Y, ROYAL M. A phase 1, open-label, dose-escalation study of the safety and efficacy of anti-CD38 antibody drug conjugate (STI-6129) in patients with relapsed or refractory multiple myeloma[J]. Blood, 2021, 138(Suppl 1): 4763.
53 KAUFMAN J L, ATRASH S, HOLSTEIN S A, et al. S181 modakafusp alfa (TAK-573): updated clinical, pharmacokinetic (PK), and immunogenicity results from a phase 1/2 study in patients (PTS) with relapsed/refractory multiple myeloma (RRMM)[J]. Hema Sphere, 2022, 6(S3): 82-83.
Outlines

/