上海交通大学学报(医学版), 2023, 43(10): 1304-1310 doi: 10.3969/j.issn.1674-8115.2023.10.012

综述

杏仁核介导的痛情绪神经环路研究进展

马翠,, 叶钰娟, 严兴科,

甘肃中医药大学针灸推拿学院,兰州 730000

Research progress on the neural circuit of pain emotion mediated by amygdala

MA CUI,, YE Yujuan, YAN Xingke,

College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

通讯作者: 严兴科,电子信箱:yanxingke@126.com

编委: 徐敏

收稿日期: 2023-07-24   接受日期: 2023-09-21   网络出版日期: 2023-10-28

基金资助: 2023年度甘肃省省级重点人才项目.  [2023]20号
2021年甘肃省科技计划项目.  21JR1RA266
国家自然科学基金.  81460744
2023年甘肃省优秀博士生项目.  23JRRA1222

Corresponding authors: YAN Xingke, E-mail:yanxingke@126.com.

Received: 2023-07-24   Accepted: 2023-09-21   Online: 2023-10-28

作者简介 About authors

马翠(1994—),女,博士生;E-mail:mc754169434@126.com。 E-mail:mc754169434@126.com

摘要

痛情绪的发生与特定中枢神经环路功能和结构改变密切相关。疼痛伴发抑郁、焦虑、痛厌恶记忆等情绪状态时,其激活或抑制的神经环路不同。边缘系统杏仁核(amygdala,AMY)参与疼痛与焦虑、抑郁、痛厌恶记忆等情绪的调节,并与疼痛和情绪相关的大脑核团存在广泛联系,共同调控疼痛、焦虑、抑郁、痛厌恶记忆等反应。该文对AMY介导的痛情绪相关的主要环路进行了梳理,总结出与抑郁相关的神经环路包括中央杏仁核→丘脑束旁核(CeA GABA→PF Glu)、中缝背核→中央杏仁核(DRN 5-HT→CeA SOM)、中央杏仁核→腹外侧导水管周围灰质(CeA GABA→vlPAG GABA),与焦虑相关的神经环路包括腹侧被盖区→中央杏仁核(VTA→CeADA)、蓝斑→基底外侧杏仁核(LC NE→BLA),与痛厌恶记忆相关的神经环路为外侧臂旁核→中央杏仁核(lPBN CGRP→CeA CGRP)。其中,激活CeA GABA→PF Glu环路可导致抑郁伴疼痛,激活CeA GABA→vlPAG GABA环路可减轻抑郁导致的痛敏,激活DRN 5-HT→CeA SOM环路可以缓解疼痛感受和抑郁情绪;激活VTA→CeA DA环路可以减轻痛敏以及焦虑样行为,抑制LC NE→BLA环路可缓解疼痛导致的焦虑;激活lPBN CGRP→CeA CGRP环路可产生痛厌恶记忆。

关键词: 痛情绪 ; 杏仁核 ; 神经环路 ; 焦虑 ; 抑郁 ; 痛厌恶记忆

Abstract

The occurrence of pain emotion is closely related to the functional and structural changes of specific central nervous circuit. When pain is accompanied by depression, anxiety, pain aversion memory and other emotional states, it activates or inhibits different neural circuits. The amygdala (AMY) of the limbic system participates in the regulation of pain, anxiety, depression, aversive memory and other emotions, and has extensive connections with brain nuclei related to pain and emotion, jointly regulating pain, anxiety, depression, aversive memory and other responses. This article summarizes the main circuits related to pain emotions mediated by AMY. It is concluded that the neural circuits related to depression include central amygdala → parafascicular nucleus of thalamus (CeA GABA → PF Glu), dorsal raphe nucleus → central amygdala (DRN 5-HT → CeA SOM), central amygdala → ventrolateral periaqueductal gray (CeA GABA → vlPAG GABA). Nerve circuits related to anxiety include ventral tegmental area → central amygdala (VTA→CeADA), locus coeruleus → basolateral amygdala (LCNE→BLA). The neural circuit related to pain aversion memory is lateral parabrachial nucleus → central amygdala (lPBN CGRP→CeA CGRP). Among them, activating the CeA GABA→PF Glu circuit can lead to depression accompanied by pain, activating the CeA GABA→vlPAG GABA circuit can alleviate pain sensitivity caused by depression, and activating the DRN 5-HT→CeA SOM circuit can alleviate pain perception and depressive emotions; activating the VTA→CeA DA loop can alleviate pain sensitivity and anxiety like behavior, inhibiting LC NE→BLA loop can alleviate anxiety caused by pain; activating the lPBN CGRP→CeA CGRP loop can generate pain aversion memory.

Keywords: pain emotion ; amygdala (AMY) ; nerve circuit ; anxiety ; depression ; aversive memory

PDF (1243KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马翠, 叶钰娟, 严兴科. 杏仁核介导的痛情绪神经环路研究进展. 上海交通大学学报(医学版)[J], 2023, 43(10): 1304-1310 doi:10.3969/j.issn.1674-8115.2023.10.012

MA CUI, YE Yujuan, YAN Xingke. Research progress on the neural circuit of pain emotion mediated by amygdala. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(10): 1304-1310 doi:10.3969/j.issn.1674-8115.2023.10.012

疼痛是一种与实际或潜在的组织损伤相关的不愉快感觉和情绪情感体验,或与此相似的经历1。此定义表明疼痛作为一种复杂的生理、心理活动,至少包含痛感觉、痛情绪、痛认知3个维度2-3。痛情绪是指与疼痛相关的负性情绪表现,是由疼痛诱发的短时间或长时间的恐惧、紧张、焦虑、抑郁等情绪状态3。痛感觉与痛情绪、痛认知相互影响,是临床上慢性疼痛难以治愈的主要原因之一24

关于痛情绪发生的中枢神经环路机制日益受到关注2。杏仁核(amygdala,AMY)作为边缘系统的重要组成部分,参与了精神情绪相关记忆的形成及储存过程,在与情绪紊乱、恐惧以及疼痛的情感调节中均发挥了重要作用5-6。近年来,随着病毒示踪技术、光遗传学、化学遗传学等新技术的应用,对以AMY为中心的神经环路研究更加深入。本文梳理了近年来AMY相关痛情绪神经环路的研究进展,总结在焦虑、抑郁、痛厌恶记忆等不同情绪状态下激活或抑制的神经环路,以期为未来痛情绪神经环路机制的研究提供理论基础和依据,为临床疼痛及痛情绪治疗提供新的思路。

1 AMY在痛情绪调节中的作用

AMY位于大脑颞叶背内侧部,居海马旁回沟的深部,侧脑室下脚尖端7,是边缘系统的重要组成部分,在认知、焦虑、抑郁情绪等各类精神疾病中都发挥了重要作用,同时AMY也是脑内疼痛情感维度的调控中心,并且参与了疼痛的下行易化通路调节8。AMY包括基底外侧杏仁核(basolateral amygdala,BLA)和中央杏仁核(central amygdala,CeA)2个部分,BLA是AMY的信息输入端,CeA是AMY的信息输出端9。BLA主要由80%的谷氨酸(glutamic acid,Glu)能神经元和20%的γ-氨基丁酸(gamma-amino butyric acid,GABA)能神经元组成10。CeA主要由GABA能中型多棘神经元组成11

AMY与皮层、下丘脑网状结构及扣带回、海马等有广泛的联系,共同调控认知、情绪和疼痛等。CeA被称为“伤害感受性AMY”,是AMY信息输出的主要子核团12,具有强烈的感觉和情感维度,主要参与情绪的处理,同时也被认为是疼痛传导的重要组成部分13。信息从丘脑、皮质传递至CeA,CeA再与前脑区和脑干形成广泛性联系,共同参与调节恐惧、焦虑、认知等反应14。DURIEUX等15发现,AMY与调控抑郁的外侧缰核(lateral habenular nucleus,LHb)存在直接联系,表明AMY是抑郁调控网络中的重要组成部分。

2 AMY介导的疼痛和抑郁样行为神经环路

2.1 中央杏仁核→丘脑束旁核(CeA GABAPF Glu

2.1.1 丘脑束旁核与痛情绪

丘脑是疼痛传导中重要的中继站,在疼痛的上行传导与下行调控通路中均发挥重要的作用。丘脑被“Y”形内髓板分为若干核群,主要包括前核群、外侧核群和内侧核群。丘脑内侧核(medial thalamic nuclei,MTh)是参与持续性疼痛及其相关厌恶情绪的重要核团,主要负责情绪-情感16。丘脑束旁核(parafascicular nucleus,PF)是MTh重要的亚核团,在疼痛调控中发挥重要作用。YANG等17对疼痛小鼠进行磁共振成像显示,疼痛小鼠PF血流量明显增加,活性增强;对PF中对应疼痛的神经元进行敲除,疼痛小鼠的PF血流量无明显变化。该研究表明PF参与疼痛小鼠的调控。DONG等18运用示踪剂研究发现,PF中的神经元可以投射到BLA和CeA,表明PF在参与介导情绪和动机行为的大脑关键区域的活动方面至关重要。以上研究表明,PF在疼痛和情绪中均发挥重要的作用,且其可投射至CeA,共同参与疼痛和情绪的调控。

2.1.2 抑制CeA GABA→PF Glu环路缓解抑郁导致的疼痛

ZHU等19研究了CeA参与抑郁和疼痛的脑环路机制发现,经过慢性束缚应激3周导致抑郁形成后,CeA中GABA能神经元活性增加。运用病毒示踪技术发现CeA中的GABA能神经元可投射至PF中Glu能神经元,使得PF中Glu能神经元活性降低,从而引发疼痛行为。化学遗传学特异地降低CeA中GABA能神经元活性,可以缓解慢性束缚应激导致的抑郁样行为和痛敏。通过光遗传学抑制CeA GABA→PF Glu神经环路,可以缓解抑郁导致的疼痛,但对慢性束缚应激导致的抑郁样行为无影响。

2.2 中缝背核→中央杏仁核(DRN 5-HTCeA SOM

2.2.1 中缝背核与痛情绪

中缝核(raphe nucleus,RN)与疼痛和情绪密切相关,在痛情绪的产生过程中发挥了重要作用20。RN中的5-羟色胺(5-hydroxytryptamine,5-HT)能神经元可投射至海马、AMY、下丘脑等大脑核团,其中上行5-HT能神经元参与情绪行为的调节,下行5-HT能神经元参与下行痛觉调制21。中缝背核(dorsal raphe nucleus,DRN)是中缝核群中参与疼痛和情绪调制的主要核团20。DRN包涵了全脑超过70%的5-HT能神经元22。研究23表明DRN的5-HT能神经元与焦虑等情绪变化密切相关,且其可投射到腹侧被盖区、终纹床核等与情绪调节相关的脑区,共同调控焦虑、奖赏行为。YU等24发现,DRN可以投射不同的5-HT能神经元到BLA的小清蛋白阳性中间神经元(parvalbumin interneuron,PVIN)和锥体神经元(pyramidal neurons,PyN),共同调控小鼠焦虑样行为。吴媛媛等20发现,DRN与痛抑郁二联征大鼠痛阈和抑郁样行为密切相关,表现为痛抑郁二联征大鼠DRN的5-HT表达降低,阳性细胞数减少。REN等25运用逆行追踪技术发现,DRN血清素神经元可投射至CeA,且其参与焦虑样行为的产生,表明DRN与CeA存在神经纤维投射。

2.2.2 激活DRN5-HT→CeASOM环路缓解疼痛和抑郁

研究26发现AMY和DRN既参与慢性疼痛也参与抑郁症的调节。5-HT能系统的功能障碍与抑郁症和慢性疼痛有关27-28。CeA中95%神经元含有抑制性神经递质GABA,GABA抑制性神经元包括3种亚型:小清蛋白、钙结合蛋白和生长抑素(somatostatin,SOM)。

ZHOU等29发现自DRN的5-HT(DRN5-HT)直接投射到CeA中SOM阳性和阴性的中间神经元。中央杏仁核SOM(CeA SOM)阳性神经元直接投射到调节抑郁的LHb。化学遗传学激活DRN内5-HT能神经元可以缓解坐骨神经分支选择性损伤模型(spared nerve injury model,SNI)小鼠的抑郁样行为。光遗传学激活CeA部位的5-HTDRN神经末梢,不仅缓解SNI小鼠抑郁样行为,还可提高其痛阈值。光遗传学抑制LHb中CeA SOM神经末梢,可减轻SNI小鼠的抑郁样行为。CeA局部注射5-HT1ARS兴奋剂,SNI小鼠抑郁样行为被减轻,表明5-HT1ARs介导的DRN 5-HT→CeA SOM神经环路可能在慢性疼痛引起的抑郁样行为中发挥作用。

2.3 中央杏仁核→腹外侧导水管周围灰质(CeA GABAvlPAG GABA

2.3.1 腹外侧导水管周围灰质与痛情绪

腹外侧导水管周围灰质(ventrolateral periaqueductal gray,vlPAG)是下行抑制疼痛的主要成分,参与下行疼痛的调控,具有明显的镇痛作用30。杨澜等31发现,化学遗传学可以激活正常大鼠vlPAG星形胶质细胞,诱导小鼠产生神经病理性疼痛样症状,表现为机械痛阈下降;同时化学遗传学可抑制vlPAG星形胶质细胞,减少糖尿病神经病理痛模型大鼠痛焦虑样行为和痛相关厌恶情绪。vlPAG中Glu能神经元和GABA能神经元在伤害性刺激的调制中起关键作用32。运用化学遗传学非特异激活vlPAG中的Glu能神经元后,对小鼠热痛产生镇痛作用;通过化学遗传学抑制GABA能神经元或激活Glu能神经元可以缓解大鼠热痛敏33。田津34发现,针刺干预后痛经患者疼痛强度减弱、疼痛持续时间减少,其机制与PAG-AMY功能连接的增强有关,表明PAG参与疼痛的调节,且其与AMY存在功能投射。卢波等35发现,PAG参与了炎性痛小鼠痛感觉及痛厌恶情绪的整合过程。另有研究36发现大鼠慢性应激诱导的抑郁样行为和快感缺失与vlPAG中兴奋性Glu能传递减弱有关。以上研究表明,vlPAG与疼痛的产生密切相关。

2.3.2 激活CeA GABA→vlPAG GABA环路缓解抑郁导致的疼痛

研究37发现AMY可通过投射到vlPAG下行抑制通路来调节疼痛的情感方面。CANTU等38发现,将逆行示踪剂氟金(fluorogold,FG)注射到vlPAG后,其可投射至CeA,且当炎性痛产生时,CeA-vlPAG通路被激活;表明CeA-vlPAG通路可能在疼痛调节中发挥促进作用。磁共振成像显示,疼痛患者AMY和PAG之间的功能连接发生了改变,纤维肌痛患者PAG与AMY的功能连接增加39,疼痛相关的恐惧导致慢性腰痛患者的AMY与PAG功能连接减少40。以上研究表明,CeA-PAG环路与疼痛和情绪处理有关。

YIN等41研究发现,自CeA的GABA能神经元(CeA GABA)投射到vlPAG的GABA能神经元(vlPAGGABA),后者又局部支配其附加的Glu能神经元,使vlPAG的Glu能神经元激活,该环路参与了慢性束缚应激导致的疼痛。抑制CeAGABA→vlPAGGABA神经环路可增加慢性束缚应激小鼠的疼痛感受。激活CeAGABA→vlPAG GABA神经环路,可以减轻慢性束缚应激小鼠的疼痛感受,但对其抑郁样行为无明显影响。

3 AMY介导的疼痛和焦虑样行为神经环路

3.1 腹侧被盖区→中央杏仁核(VTACeADA

3.1.1 腹侧被盖区与痛情绪

腹侧被盖区(ventral tegmental area,VTA)中神经元主要以多巴胺(dopamine,DA)能神经元为主42。VTA内DA能神经元在炎性疼痛及其合并的抑郁情绪中发挥重要作用43。李永丰等44发现,坐骨神经结扎后小鼠出现痛阈下降及焦虑、抑郁样行为,其机制可能与VTA内DA能神经元活动异常有关;表明VTA内DA能神经元与疼痛及其痛情绪的产生密切相关。研究45发现社交挫败抑郁小鼠VTA内DA能神经元放电频率增加,抑制VTA内DA能神经元的活性可逆转小鼠抑郁样行为表现46。以上研究表明,慢性疼痛及其负性情绪的产生与VTA内DA能神经元传递失调有关47-48。运用病毒示踪技术发现,BLA可接受来自VTA内DA能神经元的输入49,CeA接受来自整个VTA的DA能神经元投射50。有研究51认为,VTA内DA能神经元可能通过AMY来整合疼痛发生发展中的感觉和情感等成分。

3.1.2 激活VTA→CeA DA环路减轻痛敏和焦虑

VTA区中DA能神经元可投射至AMY、海马、前额叶皮层等边缘系统,共同参与情绪的调节51。VTA中DA能神经元与CeA联系紧密52,CeA中D2R阳性神经元可投射至VTA,与VTA中DA、GABA能神经元形成突触联系53

黄敏杰52发现足底切口痛模型小鼠疼痛缓解时,VTA区DA能神经元活化,进一步运用病毒示踪技术发现VTA中DA能神经元可投射至CeA;表明VTA与CeA存在神经投射。VTA→CeA DA神经环路参与疼痛及焦虑样行为的调控,足底切口痛模型建立后,小鼠VTA区DA能神经元失活,向CeA的投射减少,产生疼痛和焦虑样行为。激活VTA→CeA DA神经环路可以减轻切口痛小鼠的机械痛敏以及焦虑样行为。

3.2 蓝斑→基底外侧杏仁核(LC NEBLA

3.2.1 蓝斑与痛情绪

蓝斑核(locus coeruleus,LC)几乎100%为去甲肾上腺素能神经元,是脑内去甲肾上腺素(norepinephrine,NE)最重要的来源51。NE作为一种重要的神经递质,参与调节多种生命活动,LC中的NE与焦虑和抑郁等情绪状态密切相关54,并被认为是下行内源性镇痛的一部分。HIRSCHBERG等55研究发现,光遗传学激活LC可引起厌恶行为。LI等56研究表明,LC的去甲肾上腺素能神经元投射到脊髓背角(spinal dorsal horn,SDH),并释放NE以抑制疼痛传递,LC→脊髓去甲肾上腺素能通路(LC→spinal cord noradrenergic pathway,SC)的选择性激活可增加NE的释放,从而减轻小鼠的神经性疼痛。

3.2.2 抑制LCNE→BLA环路缓解疼痛导致的焦虑

LLORCA-TORRALBA等57研究发现LC-BLA神经环路与疼痛和焦虑密切相关。当焦虑和慢性疼痛共病时,LC-BLA神经环路存在过度激活,其主要涉及β-肾上腺素能受体的活动,疼痛会增加BLA中的去甲肾上腺素,增强对负面事件的记忆,从而导致焦虑和厌恶刺激的增强。抑制LC-BLA去甲肾上腺素能通路可以缓解长期疼痛诱导的焦虑和厌恶学习,但对疼痛本身无明显影响。

4 AMY介导的痛厌恶记忆神经环路

AMY除介导疼痛伴发的抑郁、焦虑等情绪调节外,还与疼痛导致的厌恶记忆的调节密切相关。痛记忆是指引起疼痛的初始病因(如炎性反应、创伤等)消除后,疼痛引起的伤害性感受仍然存在,当相似情景再现时会引发厌恶、回避等反应的现象58

4.1 外侧臂旁核→中央杏仁核(lPBNCGRPCeA CGRP

4.1.1 外侧臂旁核与痛记忆

外侧臂旁核(lateral parabrachial nucleus,lPBN)参与疼痛的调控,是脊髓投射神经元向脊髓上结构传递痛觉输入的主要靶点59,在痛觉性行为和对疼痛刺激的长期行为改变中发挥重要作用60。lPBN已被证实在压力或威胁环境下维持体内平衡中发挥关键作用61。研究61发现lPBN与疼痛导致的厌恶记忆有关,其可介导下行调节以促进逃避学习来避免未来的损伤。lPBN中存在降钙素基因相关肽(calcitonin gene related peptide,CGRP)神经元,其已被证明在恐惧学习和危险信号编码中发挥重要作用61

4.1.2 激活lPBN CGRP→CeA CGRP环路产生痛厌恶记忆

研究表明62-63,lPBN的CGRP神经元(lPBNCGRP)可投射至CeA的CGRP神经元(CeA CGRP),其可传递疼痛信号和疼痛相关的厌恶记忆信号。光遗传学激活lPBN中的CGRP神经元可诱导冻结行为并产生厌恶记忆。lPBN中CGRP神经元的功能沉默阻断了疼痛反应和记忆形成。激活lPBN CGRP→CeA CGRP环路可产生厌恶记忆。

5 结语

疼痛是一种复杂的生理、心理活动,疼痛患者常伴有抑郁、焦虑、厌恶记忆等负性情绪,两者常相互影响。近年来,随着神经生物学相关技术的发展,使得精确操控特定类型的神经元及其环路成为可能,疼痛及其负性情绪的神经环路研究也日益增多64。AMY在疼痛的调控及焦虑、抑郁等情绪调节中具有重要作用,有多条AMY介导的神经环路参与痛情绪的调节。其中PF Glu、DRN5-HT、vlPAG GABA参与了疼痛伴抑郁的调节;VTA、LCNE参与了疼痛伴焦虑的调控;lPBN CGRP与痛厌恶记忆密切相关。不同的神经环路参与组成痛情绪的不同方面,刺激或抑制相应神经环路不仅可以缓解疼痛,也可以逆转慢性痛导致的负性情绪。继而表明不同核团及神经元投射可产生不同的行为学结果,研究不同神经环路与疼痛及其负性情绪之间的特异性对应关系,在治疗或缓解不同来源的慢性痛和治疗手段的研究中具有重要意义16

此外,参与疼痛和情绪调节的重要核团包括边缘系统前扣带皮层、海马,大脑奖赏系统伏隔核、前额叶皮质,以及脑干的中脑导水管周围灰质和延髓头端腹内侧区等51。上述大脑核团及其与痛情绪相关的神经环路机制尚未完全阐明,今后需从以上大脑核团及其相关神经环路入手展开研究工作,进一步明确疼痛的机制和治疗靶点,帮助加深临床上对镇痛的认识,进一步创新镇痛的研究理念,从而为阐明疼痛产生的神经生物学机制提供新思路。

作者贡献声明

马翠负责提出撰写思路、撰写综述,叶钰娟负责文献整理,严兴科负责审阅、批改综述内容。所有作者均阅读并同意最终稿件的提交。

MA Cui was responsible for proposing writing ideas and writing reviews. YE Yujuan was responsible for organizing literature. YAN Xingke was responsible for reviewing and correcting the summary content. All authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

RAJA S N, CARR D B, COHEN M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982.

[本文引用: 1]

张海艳, 朱怡霖, 吴泽民, 等. 痛情绪相关神经递质的研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(6): 460-465.

[本文引用: 3]

ZHANG H Y, ZHU Y L, WU Z M, et al. Research progress on neurotransmitters related to pain emotion [J]. Chinese Journal of Pharmacology and Toxicology, 2020, 34(6): 460-465.

[本文引用: 3]

方剑乔, 邵晓梅. 针刺镇痛的新思路: 针灸参与疼痛多维度调节的可行性[J]. 针刺研究, 2017, 42(1): 85-89.

[本文引用: 2]

FANG J Q, SHAO X M. A new approach to acupuncture analgesia: the feasibility of acupuncture and moxibustion participating in multi-dimensional pain regulation[J]. Acupuncture Research, 2017, 42(1): 85-89.

[本文引用: 2]

HUMO M, LU H, YALCIN I. The molecular neurobiology of chronic pain-induced depression[J]. Cell Tissue Res, 2019, 377(1): 21-43.

[本文引用: 1]

NEUGEBAUER V, MAZZITELLI M, CRAGG B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors[J]. Neuropharmacology, 2020, 170: 108052.

[本文引用: 1]

CHEN W H, LIEN C C, CHEN C C. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala[J]. Pain, 2022, 163(3): e463-e475.

[本文引用: 1]

吴叶琪, 项亚楠, 房军帆, 等. 杏仁核NPS/NPSR神经肽系统参与痛情绪过程的研究进展[J]. 浙江中医药大学学报, 2019, 43(3)286-290.

[本文引用: 1]

WU Y Q, XIANG Y A, FANG J F, et al. Research progress on the involvement of amygdala NPS/NPSR neuropeptide system in pain emotion process [J]. Journal of Zhejiang Chinese Medical University, 2019, 43(3): 286-290.

[本文引用: 1]

赵炜楠, 胡苏皖, 翟晓静, 等. 中脑多巴胺奖赏系统与疼痛调控[J]. 中国疼痛医学杂志, 2021, 27(1): 20-30.

[本文引用: 1]

ZHAO W N, HU S W, ZHAI X J, et al. Midbrain dopamine reward system and pain regulation [J]. Chinese Journal of Pain Medicine, 2021, 27(1): 20-30.

[本文引用: 1]

GILPIN N W, HERMAN M A, ROBERTO M. The central amygdala as an integrative hub for anxiety and alcohol use disorders[J]. Biol Psychiatry, 2015, 77(10): 859-869.

[本文引用: 1]

HÁJOS N. Interneuron types and their circuits in the basolateral amygdala[J]. Front Neural Circuits, 2021, 15: 687257.

[本文引用: 1]

KRABBE S, GRÜNDEMANN J, LÜTHI A. Amygdala inhibitory circuits regulate associative fear conditioning[J]. Biol Psychiatry, 2018, 83(10): 800-809.

[本文引用: 1]

ALLEN H N, BOBNAR H J, KOLBER B J. Left and right hemispheric lateralization of the amygdala in pain[J]. Prog Neurobiol, 2021, 196: 101891.

[本文引用: 1]

CORDER G, AHANONU B, GREWE B F, et al. An amygdalar neural ensemble that encodes the unpleasantness of pain[J]. Science, 2019, 363(6424): 276-281.

[本文引用: 1]

申采薇, 徐玉英, 游言文. 催产素对抑郁症模型大鼠中央杏仁核中催产素受体表达的影响[J]. 解剖学研究, 2022, 44(2): 139-145.

[本文引用: 1]

SHEN C W, XU Y Y, YOU Y W. The effect of oxytocin on the expression of oxytocin receptor in the central amygdala of depression model rats[J]. Anatomy Research, 2022, 44(2): 139-145.

[本文引用: 1]

DURIEUX L, HERBEAUX K, BORCUK C, et al. Functional brain-wide network mapping during acute stress exposure in rats: interaction between the lateral habenula and cortical, amygdalar, hypothalamic and monoaminergic regions[J]. Eur J Neurosci, 2022, 56(8): 5154-5176.

[本文引用: 1]

陈栋洋, 韩庆荣, 盛海燕. 脊髓以上水平疼痛相关神经通路机制的研究进展[J].生理学报, 2023, 75(3): 475-485.

[本文引用: 2]

CHEN D Y, HAN Q R, SHENG H Y. Research progress of Neural pathway mechanism related to pain above spinal cord level [J]. Journal of Physiology, 2023, 75(3): 475-485.

[本文引用: 2]

YANG L, DONG F, YANG Q, et al. FGF13 selectively regulates heat nociception by interacting with Nav1.7[J]. Neuron, 2017, 93(4): 806-821.e9.

[本文引用: 1]

DONG X W, LI S, KIROUAC G J. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala[J]. Brain Struct Funct, 2017, 222(9): 3927-3943.

[本文引用: 1]

ZHU X, ZHOU W J, JIN Y, et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression[J]. Cell Rep, 2019, 29(12): 3847-3858.e5.

[本文引用: 1]

吴媛媛, 蒋永亮, 邵晓梅, 等. 痛抑郁二联征模型大鼠中缝背核不同水平5-羟色胺表达差异[J]. 解剖学报, 2015, 46(2): 170-174.

[本文引用: 3]

WU Y Y, JIANG Y L, SHAO X M, et al. Differences in 5-hydroxytryptamine expression at different levels in the dorsal raphe nucleus of rats with pain depression syndrome [J]. Journal of Anatomy, 2015, 46(2): 170-174.

[本文引用: 3]

崔玥, 黄文烨, 孟凡成, 等. 中缝背核5-羟色胺能神经环路在慢性痛及焦虑共病中的研究进展[J/OL]. 空军军医大学学报: 1-10 [2023-11-10]. http://kns.cnki.net/kcms/detail/61.1526.R.20230526. 1634.002.html.

[本文引用: 1]

CUI Y, HUANG W Y, MENG F C, et al. Research progress on the 5-hydroxytryptaminergic neural circuit of the dorsal raphe nucleus in chronic pain and anxiety comorbidities[J/OL]. Journal of Air Force Military Medical University: 1-10 [2023-06-27]. http://kns.cnki.net/kcms/detail/61.1526.R.20230526.1634.002.html.

[本文引用: 1]

MARCINKIEWCZ C A, MAZZONE C M, D'AGOSTINO G, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala[J]. Nature, 2016, 537(7618): 97-101.

[本文引用: 1]

PAQUELET G E, CARRION K, LACEFIELD C O, et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors[J]. Neuron, 2022, 110(16): 2664-2679.e8.

[本文引用: 1]

YU X D, ZHU Y, SUN Q X, et al. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety[J]. Nat Neurosci, 2022, 25(12): 1651-1663.

[本文引用: 1]

REN J, FRIEDMANN D, XIONG J, et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems[J]. Cell, 2018, 175(2): 472-487.e20.

[本文引用: 1]

ZHOU W J, JIN Y, MENG Q, et al. The neural circuit of depression associated with chronic pain [J]. Chinese Journal of Pain Medicine, 2019, 25(11): 808-810, 816.

[本文引用: 1]

MARTIN S L, POWER A, BOYLE Y, et al. 5-HT modulation of pain perception in humans[J]. Psychopharmacology, 2017, 234(19): 2929-2939.

[本文引用: 1]

MAO X H, CAI D D, LOU W. Music alleviates pain perception in depression mouse models by promoting the release of glutamate in the hippocampus of mice to act on GRIK5[J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(5/6): 463-473.

[本文引用: 1]

ZHOU W J, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658.

[本文引用: 1]

TOBALDINI G, SARDI N F, GUILHEN V A, et al. Pain inhibits pain: an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms[J]. Mol Neurobiol, 2019, 56(2): 1000-1013.

[本文引用: 1]

杨澜, 陈理, 俞昌喜. 中脑导水管周围灰质腹外侧部星形胶质细胞对糖尿病神经病理性疼痛及痛相关负性情绪的调控作用[J]. 中国药理学与毒理学杂志, 2021, 35(9): 695.

[本文引用: 1]

YANG L, CHEN L, YU C X. The regulation of astrocyte in the ventrolateral part of the midbrain periaqueductal gray on neuropathic pain and pain related negative emotions in diabetes [J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(9): 695.

[本文引用: 1]

雷晓露, 杨业, 肖智. 中脑导水管周围灰质调节行为、情绪作用的研究进展[J]. 中华神经医学杂志, 2019, 18(10): 1070-1075.

[本文引用: 1]

LEI X L, YANG Y, XIAO Z. Research progress on the role of midbrain periaqueductal gray in regulating behavior and emotion [J]. Chinese Journal of Neuromedicine, 2019, 18(10): 1070-1075.

[本文引用: 1]

SAMINENI V K, GRAJALES-REYES J G, COPITS B A, et al. Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray[J]. eNeuro, 2017, 4(2): ENEURO.0129-ENEURO.0116.2017.

[本文引用: 1]

田津. 基于静息态fMRI研究针刺对原发性痛经患者PAG脑功能连接网络的影响[D]. 成都: 成都中医药大学, 2020.

[本文引用: 1]

TIAN J. A study on the PAG brain function connect network in primary dysmenorrhea patients based on resting state fMRI[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2020.

[本文引用: 1]

卢波, 黄娅琴, 雷卫平, 等. 导水管周围灰质注射zeta假底物抑制肽对大鼠疼痛感觉和疼痛情绪的影响[J].中华医学杂志, 2015, 95(6):444-448.

[本文引用: 1]

LU B, HUANG Y Q, LEI W P, et al. Effects of zeta pseudosubstrate inhibitory peptide injected into periaqueductal gray on pain sensation and pain emotion in rats[J]. Chinese Medical Journal, 2015, 95(6): 444-448.

[本文引用: 1]

HO Y C, LIN T B, HSIEH M C, et al. Periaqueductal gray glutamatergic transmission governs chronic stress-induced depression[J]. Neuropsychopharmacology, 2018, 43(2): 302-312.

[本文引用: 1]

SUN Y, BLANCO-CENTURION C, ZOU B Y, et al. Amygdala GABA neurons project to vlPAG and mPFC[J]. IBRO Rep, 2019, 6: 132-136.

[本文引用: 1]

CANTU D J, KAUR S, MURPHY A Z, et al. Sex differences in the amygdaloid projections to the ventrolateral periaqueductal gray and their activation during inflammatory pain in the rat[J]. J Chem Neuroanat, 2022, 124: 102123.

[本文引用: 1]

TRUINI A, TINELLI E, GERARDI M C, et al. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia[J]. Clin Exp Rheumatol, 2016, 34(2 Suppl 96): S129-S133.

[本文引用: 1]

MEIER M L, STÄMPFLI P, HUMPHREYS B K, et al. The impact of pain-related fear on neural pathways of pain modulation in chronic low back pain[J]. Pain Rep, 2017, 2(3): e601.

[本文引用: 1]

YIN W W, MEI L S, SUN T T, et al. A central amygdala-ventrolateral periaqueductal gray matter pathway for pain in a mouse model of depression-like behavior[J]. Anesthesiology, 2020, 132(5): 1175-1196.

[本文引用: 1]

POULIN J F, CARONIA G, HOFER C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches[J]. Nat Neurosci, 2018, 21(9): 1260-1271.

[本文引用: 1]

MARKOVIC T, PEDERSEN C E, MASSALY N, et al. Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior[J]. Nat Neurosci, 2021, 24(11): 1601-1613.

[本文引用: 1]

李永丰, 钱召强. 慢性神经痛对中脑腹侧被盖区多巴胺神经元活动水平的影响[J]. 中国疼痛医学杂志, 2018, 24(11): 815-822.

[本文引用: 1]

LI Y F, QIAN Z Q. The effect of chronic neuralgia on the activity of dopamine neurons in the ventral tegmental area of the midbrain [J]. Chinese Journal of Pain Medicine, 2018, 24 (11): 815-822.

[本文引用: 1]

FRIEDMAN A K, WALSH J J, JUAREZ B, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience[J]. Science, 2014, 344(6181): 313-319.

[本文引用: 1]

ZHANG L D, WANG J, NIU C X, et al. Activation of parabrachial nucleus-ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice[J]. Cell Rep, 2021, 37(5): 109936.

[本文引用: 1]

DE JONG J W, AFJEI S A, DOROCIC I P, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system[J]. Neuron, 2019, 101(1): 133-151.e7.

[本文引用: 1]

刘风雨. 中脑奖赏环路中的BDNF参与慢性神经病理性疼痛的发病机制[J]. 中国疼痛医学杂志, 2017, 23(9): 647.

[本文引用: 1]

LIU F Y. The involvement of BDNF in the reward circuit of the midbrain in the pathogenesis of chronic neuropathic pain[J]. Chinese Journal of Pain Medicine, 2017, 23(9): 647.

[本文引用: 1]

MOREL C, MONTGOMERY S E, LI L, et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors[J]. Nat Commun, 2022, 13(1): 1532.

[本文引用: 1]

CASEY E, AVALE M E, KRAVITZ A, et al. Dopaminergic innervation at the central nucleus of the amygdala reveals distinct topographically segregated regions[J]. Brain Struct Funct, 2023, 228(2): 663-675.

[本文引用: 1]

陈丹丹, 周瑜, 翟晓静, 等. 基于光遗传学与化学遗传学技术的疼痛脑环路研究进展[J]. 中国疼痛医学杂志, 2022, 28(1): 7-20.

[本文引用: 4]

CHEN D D, ZHOU Y, ZHAI X J, et al. Research progress of pain brain circuit based on optogenetics and chemical genetics[J]. Chinese Journal of Pain Medicine, 2022, 28(1): 7-20.

[本文引用: 4]

黄敏杰. 多巴胺D2受体介导中脑腹侧被盖区-中央杏仁核通路参与疼痛缓解的机制研究[D]. 郑州: 郑州大学, 2020.

[本文引用: 2]

HUANG M J. The mechanism of dopamine D2 receptor mediated midbrain ventral tegmental area central amygdala pathway in pain relief[D]. Zhengzhou: Zhengzhou University, 2020.

[本文引用: 2]

KIM B, YOON S, NAKAJIMA R, et al. Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior[J]. Proc Natl Acad Sci USA, 2018, 115(45): E10730-E10739.

[本文引用: 1]

MENG Q Y, GARCIA-GARCIA A L, DRANOVSKY A, et al. Inhibition of norepinephrine signaling during a sensitive period disrupts locus coeruleus circuitry and emotional behaviors in adulthood[J]. Sci Rep, 2023, 13(1): 3077.

[本文引用: 1]

HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats[J]. eLife, 2017, 6: e29808.

[本文引用: 1]

LI J, WEI Y Y, ZHOU J L, et al. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn[J]. J Neuroinflammation, 2022, 19(1): 123.

[本文引用: 1]

LLORCA-TORRALBA M, SUÁREZ-PEREIRA I, BRAVO L, et al. Chemogenetic silencing of the locus coeruleus-basolateral amygdala pathway abolishes pain-induced anxiety and enhanced aversive learning in rats[J]. Biol Psychiatry, 2019, 85(12): 1021-1035.

[本文引用: 1]

HUMO M, LU H, YALCIN I. The molecular neurobiology of chronic pain-induced depression[J]. Cell Tissue Res, 2019, 377(1): 21-43.

[本文引用: 1]

LI J, TIAN C, YUAN S, et al. Neuropathic pain following spinal cord hemisection induced by the reorganization in primary somatosensory cortex and regulated by neuronal activity of lateral parabrachial nucleus[J]. CNS Neurosci Ther, 2023, 29(11): 3269-3289.

[本文引用: 1]

CAMPOS C A, BOWEN A J, ROMAN C W, et al. Encoding of danger by parabrachial CGRP neurons[J]. Nature, 2018, 555(7698): 617-622.

[本文引用: 1]

PALMITER R D. The parabrachial nucleus: CGRP neurons function as a general alarm[J]. Trends Neurosci, 2018, 41(5): 280-293.

[本文引用: 3]

CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response[J]. Neuron, 2020, 106(6): 927-939.e5.

[本文引用: 1]

HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an affective pain circuit that creates a threat memory[J]. Cell, 2015, 162(2): 363-374.

[本文引用: 1]

尹俊滨. 背内侧前额叶皮层对慢性痛的下行调控作用及其机制[D].西安: 第四军医大学, 2017.

[本文引用: 1]

YIN J B The descending regulatory effect and mechanism of the dorsomedial prefrontal cortex on chronic pain[D]. Xi'an: Fourth Military Medical University, 2017.

[本文引用: 1]

/