论著·基础研究

小鼠持续葡萄糖监测技术的建立及其血糖时间序列的多尺度熵分析

  • 李成 ,
  • 张明亮 ,
  • 应令雯 ,
  • 苏娇溶 ,
  • 陶睿 ,
  • 于霞 ,
  • 包玉倩 ,
  • 周健
展开
  • 1.上海交通大学附属第六人民医院内分泌代谢科,上海市糖尿病研究所,上海市糖尿病重点实验室,上海市糖尿病临床医学中心,上海 200233
    2.东北大学信息科学与工程学院,沈阳 110819
李成(1994—),女,博士生;电子信箱:licheng_sjtu@sjtu.edu.cn

收稿日期: 2020-04-22

  网络出版日期: 2021-02-28

基金资助

国家重点研发计划(2018YFC2001004);国家自然科学基金青年科学基金(61903071);上海市教育委员会高峰高原学科建设计划(20161430)

Establishment of continuous glucose monitoring in mice and multiscale entropy analysis of glucose time series

  • Cheng LI ,
  • Ming-liang ZHANG ,
  • Ling-wen YING ,
  • Jiao-rong SU ,
  • Rui TAO ,
  • Xia YU ,
  • Yu-qian BAO ,
  • Jian ZHOU
Expand
  • 1.Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai Clinical Center for Diabetes, Shanghai 200233, China
    2.College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Received date: 2020-04-22

  Online published: 2021-02-28

Supported by

National Key Research and Development Program of China(2018YFC2001004);National Natural Science Foundation of China(61903071);Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20161430)

摘要

目的·建立小鼠持续葡萄糖监测(continuous glucose monitoring,CGM)技术,并对其血糖时间序列进行多尺度熵(multiscale entropy,MSE)分析。方法·选取饮食诱导肥胖型(diet-induced obesity,DIO)小鼠(n=3,DIO组)及对照组小鼠(n=3)为研究对象,利用全植入式血糖遥测系统分别收集2组小鼠的血糖及体温数据,取术后第10~14日数据进行分析,并统计系统的记录时间。利用MATLAB R2019b软件对2组小鼠术后第11~17日的血糖时间序列进行MSE分析,计算每个时间尺度上对应的熵值。结果·成功建立了以全植入式血糖遥测系统为基础的小鼠CGM技术。6只小鼠的平均记录时间为(27.3±9.3)d,共获得232 887个血糖数值。DIO组小鼠平均血糖水平为(7.04±0.71)mmol/L,平均体温为(33.34±0.18)℃。与对照组相比,DIO组小鼠血糖时间序列复杂度较低,但差异无统计学意义。结论·成功建立了小鼠CGM技术;MSE分析发现,DIO型小鼠血糖时间序列复杂度降低,可能是其早期糖代谢异常的表现之一。

本文引用格式

李成 , 张明亮 , 应令雯 , 苏娇溶 , 陶睿 , 于霞 , 包玉倩 , 周健 . 小鼠持续葡萄糖监测技术的建立及其血糖时间序列的多尺度熵分析[J]. 上海交通大学学报(医学版), 2021 , 41(2) : 134 -139 . DOI: 10.3969/j.issn.1674-8115.2021.02.002

Abstract

Objective·To establish continuous glucose monitoring (CGM) in mice and implement multiscale entropy (MSE) analysis of glucose time series. Methods·Diet-induced obesity (DIO) mice (n=3) and control mice (n=3) were selected as the research objects. The blood glucose and body temperature data of the two groups were collected by using the implantable glucose telemetry system. The data of 10?14 days after operation were analyzed, and the recording time of the system was counted. Using MATLAB R2019b software, MSE analysis was performed on glucose time series of the two groups from 11 to 17 days after operation, and the corresponding entropy value on each time scale was calculated. Results·The CGM technology based on the implantable glucose telemetry system in mice was successfully established. The average recording time of the 6 mice was (27.3±9.3) d, and 232 887 blood glucose values were obtained. The mean blood glucose level of the DIO mice was (7.04±0.71) mmol/L and the mean body temperature was (33.34±0.18) ℃. Compared with that of the control mice, the glucose time series complexity of the DIO mice was lower, and the difference between the two groups was not statistically significant. Conclusion·The CGM technology in mice is successfully established. MSE analysis shows that the complexity of glucose time series in the DIO mice decreases, which may be one of the manifestations of abnormal glucose metabolism in the early stage.

参考文献

1 Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640.
2 Korstanje R, Ryan JL, Savage HS, et al. Continuous glucose monitoring in female NOD mice reveals daily rhythms and a negative correlation with body temperature[J]. Endocrinology, 2017, 158(9): 2707-2712.
3 李成, 周健, 贾伟平. 持续葡萄糖监测技术在实验动物模型中应用的研究进展[J]. 中华糖尿病杂志, 2019, 11(11): 761-764.
4 Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 71(2Pt 1): 021906.
5 Costa MD, Henriques T, Munshi MN, et al. Dynamical glucometry: use of multiscale entropy analysis in diabetes[J]. Chaos, 2014, 24(3): 033139.
6 Chen JL, Chen PF, Wang HM. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(2): R179-R183.
7 Jia W, Weng J, Zhu D, et al. Standards of medical care for type 2 diabetes in China 2019[J]. Diabetes Metab Res Rev, 2019, 35(6): e3158.
8 Salkind SJ, Huizenga R, Fonda SJ, et al. Glycemic variability in nondiabetic morbidly obese persons: results of an observational study and review of the literature[J]. J Diabetes Sci Technol, 2014, 8(5): 1042-1047.
9 King AJF, Kennard MR, Nandi M. Continuous glucose monitoring in conscious unrestrained mice[J]. Methods Mol Biol, 2020, 2128: 225-239.
10 Brockway R, Tiesma S, Bogie H, et al. Fully implantable arterial blood glucose device for metabolic research applications in rats for two months[J]. J Diabetes Sci Technol, 2015, 9(4): 771-781.
11 Pedersen C, Porsgaard T, Thomsen M, et al. Sustained effect of glucagon on body weight and blood glucose: assessed by continuous glucose monitoring in diabetic rats[J]. PLoS One, 2018, 13(3): e0194468.
12 Golic M, Kr?ker K, Fischer C, et al. Continuous blood glucose monitoring reveals enormous circadian variations in pregnant diabetic rats[J]. Front Endocrinol (Lausanne), 2018, 9: 271.
13 Lu Z, Wei X, Sun F, et al. Non-insulin determinant pathways maintain glucose homeostasis upon metabolic surgery[J]. Cell Discov, 2018, 4: 58.
14 Wang B, Sun G, Qiao W, et al. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys[J]. J Endocrinol Invest, 2017, 40(9): 967-977.
15 谢云, 李宝毅, 栾晓军, 等. 利用时间序列的相空间重构技术研究不同糖调节人群血糖波动的变化[J]. 中华内分泌代谢杂志, 2012, 28(9): 722-725.
16 于浩泳, 贾伟平, 包玉倩, 等. 超重及糖耐量异常个体胰岛素慢速脉冲分泌模式研究[J]. 中华医学杂志, 2006, 86(20): 1405-1409.
17 Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series[J]. Phys Rev Lett, 2002, 89(6): 068102.
18 Busa MA, van Emmerik REA. Multiscale entropy: a tool for understanding the complexity of postural control[J]. J Sport Health Sci, 2016, 5(1): 44-51.
19 Raubertas R, Beech J, Watson W, et al. Decreased complexity of glucose dynamics in diabetes in rhesus monkeys[J]. Sci Rep, 2019, 9(1): 1438.
20 Zhang XD, Pechter D, Yang L, et al. Decreased complexity of glucose dynamics preceding the onset of diabetes in mice and rats[J]. PLoS One, 2017, 12(9): e0182810.
21 Peng CK, Costa M, Goldberger AL. Adaptive data analysis of complex fluctuations in physiologic time series[J]. Adv Adapt Data Anal, 2009, 1(1): 61-70.
22 来云云, 辛怡, 谷伟军, 等. 动态血糖序列的精细复合多尺度熵分析[J]. 生物医学工程学杂志, 2017, 34(1): 123-128.
文章导航

/