论著·临床研究

光学相干断层扫描血管成像技术观察糖尿病性视网膜病变及糖尿病性黄斑水肿患者视网膜血流变化

  • 王韩影 ,
  • 蒋炎 ,
  • 王晴仪 ,
  • 石新 ,
  • 牛田 ,
  • 邢馨丹 ,
  • 沈胤忱 ,
  • 陈翀 ,
  • 刘堃
展开
  • 上海交通大学附属第一人民医院眼科,国家眼部疾病临床医学研究中心,上海市眼底病重点实验室,上海市眼视光及光医学工程研究中心,上海市眼科疾病精准诊疗工程技术研究中心,上海 200080
王韩影(1991—),女,住院医师,硕士,电子信箱:617135761@qq.com|蒋炎(1994—),女,住院医师,硕士,电子信箱:jy_470639444@163.com

收稿日期: 2020-04-01

  网络出版日期: 2021-02-28

基金资助

国家重点研发计划(2016YFC0904800);国家科技重大专项(2017ZX09304010);国家自然科学基金(81870667);上海市教育委员会高峰高原学科建设计划(20161426)

Detection of vessel density changes in eyes of patients with diabetic retinopathy and diabetic macular edema using optical coherence tomography angiography

  • Han-ying WANG ,
  • Yan JIANG ,
  • Ching-yi WANG ,
  • Xin SHI ,
  • Tian NIU ,
  • Xin-dan XING ,
  • Yin-chen SHEN ,
  • Chong CHEN ,
  • Kun LIU
Expand
  • Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China

Received date: 2020-04-01

  Online published: 2021-02-28

Supported by

National Key Research and Development Program of China(2016YFC0904800);National Science and Technology Major Project of China(2017ZX09304010);National Natural Science Foundation of China(81870667);Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20161426)

摘要

目的·利用光学相干断层扫描(optical coherence tomography,OCT)和光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)技术观察不同分期的糖尿病性视网膜病变(diabetic retinopathy,DR)以及伴随/不伴随糖尿病性黄斑水肿(diabetic macular edema,DME)的DR的影像学特征,寻找相关危险因子及潜在OCTA影像学生物标志物。方法·于上海交通大学附属第一人民医院入组90例DR患者,根据糖尿病性视网膜病变早期治疗研究分级标准分为轻、中、重度非增殖性糖尿病性视网膜病组和增殖性糖尿病性视网膜病组,并根据OCT影像分为DME组和无DME组。对所有受试者的OCT影像以及OCTA参数包括视网膜浅层、深层血流密度和中心凹无血管区面积进行比较分析;采用Logistic 回归排除混杂因素影响,寻找与DR严重程度相关、与DME发生相关的影像学改变,以及包括性别、年龄、基础疾病病史、抗高血压药使用情况和血液指标在内的其他因素。结果·糖尿病发病年龄(P=0.042,95%CI -0.057~-0.001)以及视网膜深层血流密度(P=0.040,95%CI -0.066~-0.002)与DR疾病严重程度呈负相关。无高血脂为DR疾病进展的保护因素(P=0.027,95% CI -3.001~-0.176)。DME的发生率随着DR的严重程度加重而升高(P=0.004),视网膜内层结构紊乱的出现与DME相关(P=0.000);但未发现与DME明显相关的视网膜血流密度改变。结论·DR的进展可能与视网膜深层血管的血流密度密切相关,该指标可能成为预测DR进展的影像学生物标志物。

本文引用格式

王韩影 , 蒋炎 , 王晴仪 , 石新 , 牛田 , 邢馨丹 , 沈胤忱 , 陈翀 , 刘堃 . 光学相干断层扫描血管成像技术观察糖尿病性视网膜病变及糖尿病性黄斑水肿患者视网膜血流变化[J]. 上海交通大学学报(医学版), 2021 , 41(2) : 166 -172 . DOI: 10.3969/j.issn.1674-8115.2021.02.007

Abstract

Objective

·To observe the features of diabetic retinopathy (DR) at different stages, which is accompanied/not accompanied by diabetic macular edema (DME), using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA), and to determine related risk factors and potential OCTA imaging biomarkers of DR progression.

Methods

·Ninety DR patients from Shanghai General Hospital, Shanghai Jiao Tong University were divided into four groups according to early treatment of diabetic retinopathy study (ETDRS) grading standard (mild, moderate, severe non-proliferative diabetic retinopathy and proliferative diabetic retinopathy groups), or two groups according to the presence of DME or not. OCTA metrics, including superficial vessel density, deep vessel density and foveal avascular zone area were compared. Logistic regression was used to exclude confounding factors. Imaging changes related to DR severity and DME occurrence, as well as other factors including gender, age, history of underlying diseases, use of antihypertensive drugs and blood indicators were searched.

Results

·Lower age of the onset of diabetes (P=0.042, 95%CI -0.057--0.001) and lower deep vessel density (P=0.040, 95%CI -0.066--0.002) were significantly associated with DR progression. The absence of hyperlipidemia was a protective factor for the progression of DR disease (P=0.027, 95%CI -3.001--0.176). The incidence of DME increased with the severity of DR (P=0.004), and the occurrence of disorganization of retinal inner layers was significantly related to DME (P=0.000). No alteration in vessel density was observed between patients with DME and those without DME.

Conclusion

·The progression of DR may be closely related to the vessel density of deep retinal vessels, which may become an imaging biomarker to predict the development of DR.

参考文献

1 Wolter JR. Diabetic retinopathy[J]. Am J Ophthalmol, 1961, 51(5): 1123/251-1141/269.
2 Resnikoff S, Pascolini D, Etya'Ale D, et al. Global data on visual impairment in the year 2002[J]. Bull World Heal Organ, 2004, 82(11): 844-851.
3 Gangwani RA, Lian JX, McGhee SM, et al. Diabetic retinopathy screening: global and local perspective[J]. Hong Kong Med J, 2016, 22(5): 486-495.
4 Alasil T, Keane PA, Updike JF, et al. Relationship between optical coherence tomography retinal parameters and visual acuity in diabetic macular edema[J]. Ophthalmology, 2010, 117(12): 2379-2386.
5 Ito SI, Miyamoto N, Ishida K, et al. Association between external limiting membrane status and visual acuity in diabetic macular oedema[J]. Br J Ophthalmol, 2013, 97(2): 228-232.
6 Maheshwary AS, Oster SF, Yuson RMS, et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2010, 150(1): 63-67.e1.
7 Forooghian F, Stetson PF, Meyer SA, et al. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema[J]. Retin Phila Pa, 2010, 30(1): 63-70.
8 Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717.e1.
9 Deák GG, Bolz M, Ritter M, et al. A systematic correlation between morphology and functional alterations in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6710.
10 Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570.
11 Tan BY, Chua J, Lin E, et al. Quantitative microvascular analysis with wide-field optical coherence tomography angiography in eyes with diabetic retinopathy[J]. JAMA Netw Open, 2020, 3(1): e1919469.
12 Sun ZH, Tang FY, Wong R, et al. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema[J]. Ophthalmology, 2019, 126(12): 1675-1684.
13 钱丽君, 马健, 尹厚发, 等. 非增殖性糖尿病视网膜病变的程度与视网膜血流指数相关性研究[J]. 中华全科医学, 2018, 16(11): 1784-1786, 1803.
14 杨庭骅. 糖尿病性视网膜病变患者黄斑区视网膜血流密度的改变[D]. 济南: 山东大学, 2019.
15 Wilkinson C, Ⅲ Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
16 Friedman SM, Almukhtar TH, Baker CW, et al. Topical nepafenec in eyes with noncentral diabetic macular edema[J]. Retina, 2015, 35(5): 944-956.
17 Ng SM, Ayoola OO, McGuigan MP, et al. A multicentre study evaluating the risk and prevalence of diabetic retinopathy in children and young people with type 1 diabetes mellitus[J]. Diabetes Metab Syndr: Clin Res Rev, 2019, 13(1): 744-746.
18 Hammes HP, Kerner W, Hofer S, et al. Diabetic retinopathy in type 1 diabetes: a contemporary analysis of 8 784 patients[J]. Diabetologia, 2011, 54(8): 1977-1984.
19 Hletala K, Harjutsalo V, Forsblom C, et al. Age at onset and the risk of proliferative retinopathy in type 1 diabetes[J]. Diabetes Care, 2010, 33(6): 1315-1319.
20 Kullberg CE, Abrahamsson M, Arnqvist HJ, et al. Prevalence of retinopathy differs with age at onset of diabetes in a population of patients with type 1 diabetes[J]. Diabet Med, 2002, 19(11): 924-931.
21 Zou WJ, Ni LS, Lu QY, et al. Diabetes onset at 31?45 years of age is associated with an increased risk of diabetic retinopathy in type 2 diabetes[J]. Sci Rep, 2016, 6: 38113.
22 Song PG, Yu JY, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J]. J Glob Heal, 2018, 8(1): 010803.
23 Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States[J]. JAMA Ophthalmol, 2014, 132(11): 1334.
24 Kim EJ, Lin WV, Rodriguez SM, et al. Treatment of diabetic macular edema[J]. Curr Diab Rep, 2019, 19(9): 68.
25 Tan PEZ, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5728.
26 Chan G, Balaratnasingam C, Yu PK, et al. Quantitative morphometry of perifoveal capillary networks in the human retina[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5502.
27 Borrelli E, Sacconi R, Brambati M, et al. In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina[J]. Sci Rep, 2019, 9: 16789.
28 Early Treatment Diabetic Retinopathy Study Research Group. Fluorescein angiographic risk factors for progression of diabetic retinopathy ETDRS report number 13[J]. Ophthalmology, 1991, 98(5): 834-840.
29 Onishi AC, Nesper PL, Roberts PK, et al. Importance of considering the middle capillary plexus on OCT angiography in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 2167.
30 AttaAllah HR, Mohamed AAM, Ali MA. Macular vessels density in diabetic retinopathy: quantitative assessment using optical coherence tomography angiography[J]. Int Ophthalmol, 2019, 39(8): 1845-1859.
31 Spaide RF. Retinal vascular cystoid macular edema[J]. Retina, 2016, 36(10): 1823-1842.
32 Fayed AE, Abdelbaki AM, El Zawahry OM, et al. Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation[J]. PLoS One, 2019, 14(12): e0226629.
33 Pelosini L, Hull CC, Boyce JF, et al. Optical coherence tomography may be used to predict visual acuity in patients with macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2741.
文章导航

/