收稿日期: 2020-04-05
网络出版日期: 2021-04-06
基金资助
国家自然科学基金(31700121);上海市高水平地方高校创新团队(SSMU-ZLCX20180202)
Acetylation involved in bacterial susceptibility to ribosome-targeting antibiotics
Received date: 2020-04-05
Online published: 2021-04-06
Supported by
National Natural Science Foundation of China(31700121);Innovative Research Team of High-Level Local Universities in Shanghai(SSMU-ZLCX20180202)
目的·探究乙酰化修饰在细菌应对核糖体靶向抗生素胁迫下的作用。方法·通过肉汤稀释法检测嘌呤霉素、巴龙霉素、四环素和壮观霉素对于鼠伤寒沙门菌(Salmonella enterica serovar Typhimurium,S. Typhimurium)14028S的最低抑菌浓度 (minimum inhibitory concentration,MIC)。配置浓度低于各抗生素MIC的固体培养基。点板实验检测S. Typhimurium 14028S和3种乙酰化修饰相关基因敲除株[蛋白质乙酰转移酶(protein acetyltransferase,Pat)编码基因敲除株Δpat、烟酰胺腺嘌呤二核苷酸依赖性去乙酰化酶(NAD+-dependent protein deacylase,CobB)编码基因敲除株ΔcobB、乙酸激酶(acetate kinase,AckA)编码基因敲除株ΔackA]在不同抗生素浓度的固体培养基上的生长差异。结果·乙酰化程度升高(ΔackA),增加S. Typhimurium对嘌呤霉素的敏感性,但会减弱S. Typhimurium对巴龙霉素的敏感性;而乙酰化程度升高(ΔackA、ΔcobB)或降低(Δpat)均不影响S. Typhimurium对四环素和壮观霉素的敏感性。结论·乙酰化修饰影响细菌对核糖体靶向抗生素的敏感性,这种改变可能是通过核糖体蛋白的乙酰化修饰来调控的。
来亚男 , 姚玉峰 , 郭晓奎 , 倪进婧 . 乙酰化修饰在影响细菌对核糖体靶向抗生素敏感性中的作用[J]. 上海交通大学学报(医学版), 2021 , 41(3) : 308 -313 . DOI: 10.3969/j.issn.1674-8115.2021.03.004
·To investigate the effects of acetylation on the bacterial susceptibility to ribosome-targeting antibiotics.
·The minimum inhibitory concentrations (MICs) of puromycin, paromomycin, tetracycline and spectinomycin for Salmonella enterica serovar Typhimurium (S. Typhimurium) 14028S were determined by the broth dilution method. The solid mediums with concentration lower than MIC was prepared. The spot dilution assay was employed to determine the susceptibility of S. Typhimuriumstrain 14028S, protein acetyltransferase (pat) knockout strain (Δpat), NAD+-dependent protein deacylase (cobB) knockout strain (ΔcobB) and acetate kinase (ackA) knockout strain (ΔackA) to four kinds of ribosome-targeting antibiotics.
·Increase of acetylation (ΔackA) promoted the susceptibility of S. Typhimurium to puromycin, but promoted the resistance of S. Typhimurium to paromomycin. However, the sensitivity of S. Typhimurium to tetracycline and spectinomycin was not affected by the increase of acetylation (ΔackA or ΔcobB) or decrease of acetylation (Δpat).
·Acetylation is involved in the susceptibility of S. Typhimurium to ribosome-targeting antibiotics, suggesting that acetylation of ribosomal proteins may contribute to bacterial antibiotic sensitivity.
Key words: acetylation; ribosome; ribosome-targeting antibiotics
1 | Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance[J]. Nat Rev Microbiol, 2014, 12(1): 35-48. |
2 | Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic inhibition[J]. Cold Spring Harb Perspect Med, 2016, 6(9): a025361. |
3 | Walsh C. Where will new antibiotics come from?[J] Nat Rev Microbiol, 2003, 1(1): 65-70. |
4 | Lu M, Symersky J, Radchenko M, et al. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter [J]. Proc Natl Acad Sci U S A, 2013, 110(6): 2099-2104. |
5 | Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases[J]. Infect Dis Clin North Am, 2016, 30(2): 523-537. |
6 | Weisblum B. Erythromycin resistance by ribosome modification[J]. Antimicrob Agents Chemother, 1995, 39(3): 577-585. |
7 | Traub P, Nomura M. Streptomycin resistance mutation in Escherichia coli: altered ribosomal protein[J]. Science, 1968, 160(3824): 198-199. |
8 | Gregory ST, Cate JH, Dahlberg AE. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus[J]. J Mol Biol2001, 309(2): 333-338. |
9 | Ren J, Sang Y, Tan Y, et al. Acetylation of lysine 201 inhibits the DNA-binding ability of PhoP to regulate Salmonella virulence[J]. PLoS Pathog, 2016, 12(3): e1005458. |
10 | Ren J, Sang Y, Ni J, et al. Acetylation regulates survival of Salmonella enterica Serovar Typhimurium under acid stress[J]. Appl Environ Microbiol, 2015, 81(17): 5675-5682. |
11 | Zhang K, Zheng S, Yang JS, et al. Comprehensive profiling of protein lysine acetylation in Escherichia coli[J]. J Proteome Res, 2013, 12(2): 844-851. |
12 | Starai VJ, Escalante-Semerena JC. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica[J]. J Mol Biol, 2004, 340(5): 1005-1012. |
13 | Verdin E, Ott M. Acetylphosphate: a novel link between lysine acetylation and intermediary metabolism in bacteria [J]. Mol Cell, 2013, 51(2): 132-134. |
14 | Kuhn ML, Zemaitaitis B, Hu LI, et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation[J]. PLoS One, 2014, 9(4) :e94816. |
15 | AbouElfetouh A, Kuhn ML, Hu LI, et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites[J]. Microbiologyopen, 2015, 4(1): 66-83. |
16 | Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nat Protoc, 2008, 3(2): 163-175. |
17 | Witzky A, Tollerson R 2nd, Ibba M. Translational control of antibiotic resistance [J].Open Biol, 2019, 9(7): 190051. |
18 | Bj?rkman J, Samuelsson P, Andersson DI, et al. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium[J]. Mol Microbiol, 1999, 31(1): 53-58. |
19 | Wilson DN. The A-Z of bacterial translation inhibitors[J]. Crit Rev Biochem Mol Biol, 2009, 44(6): 393-433. |
20 | Kamita M, Kimura Y, Ino Y, et al. Nα-acetylation of yeast ribosomal proteins and its effect on protein synthesis[J]. J Proteomics, 2011, 74(4): 431-441. |
21 | Kehrenberg C, Schwarz S. Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida[J]. Antimicrob Agents Chemother, 2007, 51(6): 2244-2246. |
22 | Bj?rkman J, Hughes D, Andersson DI. Virulence of antibiotic-resistant Salmonella typhimurium[J]. Proc Natl Acad Sci U S A, 1998, 95(7): 3949-3953. |
/
〈 |
|
〉 |