收稿日期: 2020-07-05
网络出版日期: 2021-05-14
基金资助
国家自然科学基金(81570964)
Correlation analysis of salivary microbiome and host blood lipid levels
Received date: 2020-07-05
Online published: 2021-05-14
Supported by
National Natural Science Foundation of China(81570964)
目的·分析唾液菌群微生物与宿主血脂水平的相关性。方法·采集114名45~60岁志愿者的唾液菌群样本,提取总DNA,随后应用多聚酶链式反应进行16S rDNA V3?V4区扩增。扩增所得产物经Illumina MiSeq PE300平台测序后,将所得序列进行操作分类单元(operational taxonomic units,OTUs)聚类、物种注释并将唾液菌群中丰度前50的属与宿主血脂水平作Spearman相关分析,P<0.05记为差异有统计学意义。结果·114名志愿者的唾液菌群样本测序所得平均序列数为(41 084±4 740)条,聚类所得OTUs数为1 153,共注释到23个门、43个纲、89个目、147个科和317个属。门水平和属水平的物种聚类热图示114个唾液菌群样本具有相似的物种组成丰度模式。Spearman相关分析结果显示,在唾液菌群微生物丰度前50的属中,Neisseria spp.的丰度与宿主血清总胆固醇(total cholesterol,TCH)、三酰甘油(triacylglycerol,TAG)和低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-Ch)的水平成负相关;Gemella spp.的丰度与宿主血清TCH、LDL-Ch水平呈正相关;与宿主血清高密度脂蛋白胆固醇水平成负相关的属有Comamonas spp.、Filifactor spp.和Parvimonas spp.。结论·人群中唾液菌群微生物的组成结构具有相对稳定性且与宿主血脂水平相关,可进一步挖掘唾液菌群微生物作为个体脂代谢异常的预警指标。
关键词: 唾液菌群; 血脂水平; 16S rDNA测序; Spearman相关分析
赵芬 , 晋巧巧 , 苑克勇 , 侯秀秀 , 黄正蔚 , 马瑞 . 唾液菌群微生物与宿主血脂水平的关联分析[J]. 上海交通大学学报(医学版), 2021 , 41(4) : 442 -447 . DOI: 10.3969/j.issn.1674-8115.2021.04.005
·To analyze the correlation between salivary microbiome and host blood lipid levels.
·Samples of saliva from 114 volunteers aged 45?60 years were collected to extract total DNA, and then 16S rDNA V3?V4 region was amplified with polymerase chain reaction. After the amplified products were sequenced via Illumina MiSeq PE300 platform,the obtained sequences were subjected to operational taxonomic units (OTUs) clustering and species annotation.The Spearman correlation analysis was also carried out to find the correlations between the top 50 abundant genera in the salivary microbiome and host blood lipid levels, P<0.05 was considered as statistically significant difference.
·The saliva samples of 114 volunteers were sequenced with an average sequence number of 41 084±4 740, and the number of OTUs obtained by clustering was 1 153, annotated to 23 phyla, 43 classes, 89 orders, 147 families and 317 genera. Species clustering heat map of 114 samples suggested that salivary microbiome has similar abundance patterns of species composition in the population.Spearman correlation analysis showed that among triacylglycerol (TAG) the top 50 abundant genera in the salivary microbiome, Neisseria spp. were negatively correlated with the host serum total cholesterol (TCH), and low density lipoprotein cholesterol level (LDL-Ch); Gemella spp. are positively correlated with Host serum TCH and LDL-Ch; high-density lipoprotein cholesterol presents negative correlation with Comamonas spp., Filifactor spp. and Parvimonas spp.
·The composition structure of salivary microbiota in the population is quite stable and is related to the levels of host blood lipids. It is promising to further explore salivary microbiota as early warning indicators of individual lipid metabolism abnormalities.
1 | Bjornstad P, Eckel RH. Pathogenesis of lipid disorders in insulin resistance: a brief review[J]. Curr Diab Rep, 2018, 18(12): 127. |
2 | Kopin L, Lowenstein C. Dyslipidemia[J]. Ann Intern Med,2017, 167(11):81-96. |
3 | Jaramillo A, Lafaurie GI, Millán LV, et al. Association between periodontal disease and plasma levels of cholesterol and triglycerides[J]. Colomb Med (Cali), 2013, 44(2): 80-86. |
4 | Segata N, Haake SK, Mannon P, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples[J]. Genome Biol, 2012, 13(6): R42. |
5 | Wang J, Jia Z, Zhang B, et al. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract[J]. Gut, 2020, 69(7): 1355-1356. |
6 | Kodukula K, Faller DV, Harpp DN, et al. Gut microbiota and salivary diagnostics: the mouth is salivating to tell us something[J]. Biores Open Access, 2017, 6(1): 123-132. |
7 | Navazesh M. Methods for collecting saliva [J]. Ann N Y Acad Sci. 1993, 694:72-77. |
8 | Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project [J]. Nature,2019,569(7758):641-648. |
9 | Dominguez-Bello MG, Godoy-Vitorino F, Knight R, et al. Role of the microbiome in human development[J]. Gut, 2019, 68(6): 1108-1114. |
10 | Gao L, Xu T, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500. |
11 | Arimatsu K, Yamada H, Miyazawa H, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota[J]. Sci Rep, 2014, 4: 4828. |
12 | Li B, Ge Y, Cheng L, et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice[J]. Int J Oral Sci, 2019, 11(1): 10. |
13 | Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21(8): 895-905. |
14 | Sabharwal A, Ganley K, Miecznikowski JC, et al. The salivary microbiome of diabetic and non-diabetic adults with periodontal disease[J]. J Periodontol, 2019, 90(1): 26-34. |
15 | Troisi J, Belmonte F, Bisogno A, et al. Metabolomic salivary signature of pediatric obesity related liver disease and metabolic syndrome[J]. Nutrients,2019,11(2):274. |
16 | 吴宇佳, 迟晓培, 陈峰, 等. 肥胖者唾液微生物宏基因组学特点[J]. 北京大学学报(医学版), 2018, 50(1): 5-12. |
17 | Zaura E, Keijser BJ, Huse SM, et al. Defining the healthy "core microbiome" of oral microbial communities[J]. BMC Microbiol, 2009, 9: 259. |
18 | Hu YJ, Shao ZY, Wang Q, et al. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing[J]. PLoS One, 2013, 8(2): e56343. |
19 | Kalita S, Khandelwal S, Madan J, et al. Almonds and cardiovascular health: areview[J]. Nutrients,2018,10(4):468. |
20 | Hintao J, Teanpaisan R, Chongsuvivatwong V, et al. The microbiological profiles of saliva, supragingival and subgingival plaque and dental caries in adults with and without type 2 diabetes mellitus[J]. Oral Microbiol Immunol, 2007, 22(3): 175-181. |
21 | Meuric V, Le Gall-David S, Boyer E, et al. Signature of microbial dysbiosis in periodontitis[J]. Appl Environ Microbiol, 2017,83(14):e00462-17. |
22 | Shinha T. Endocarditis due to Gemellamorbillorum[J]. Intern Med,2017,56(13):1751. |
23 | Wang X, Zhao Z, Tang N, et al. Microbial community analysis of saliva and biopsies in patients with oral lichen planus[J]. Front Microbiol, 2020, 11: 629. |
24 | Rengarajan S, Vivio EE, Parkes M, et al. Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease[J]. Gut Microbes, 2020, 11(3): 405-420. |
25 | Cao Y, Qiao M, Tian Z, et al. Comparative analyses of subgingival microbiome in chronic periodontitis patients with and without IgA nephropathy by high throughput 16S rRNA sequencing[J]. Cell PhysiolBiochem, 2018, 47(2): 774-783. |
26 | Kwong TNY, Wang X, Nakatsu G, et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer[J]. Gastroenterology, 2018, 155(2): 383-390.e8. |
/
〈 |
|
〉 |