收稿日期: 2020-01-11
网络出版日期: 2021-05-14
基金资助
国家自然科学基金(81700828);国家重点研发计划(2016YFC0904800);国家科技重大专项(2017ZX09304010)
Review and prospect of anti-vascular endothelial growth factor treatment for wet age-related macular degeneration
Received date: 2020-01-11
Online published: 2021-05-14
Supported by
National Natural Science Foundation of China(81700828);National Key R&D Program of China(2016YFC0904800);National Science and Technology Major Project of China(2017ZX09304010)
自雷珠单抗2006年上市以来,抗血管内皮生长因子(vascular endothelial growth factor,VEGF)药物一直是治疗湿性年龄相关性黄斑变性(age-related macular degeneration,AMD)的一线药物。然而,临床研究显示,抗VEGF药物治疗若干年后患者视力回到基线水平,甚至伴视网膜纤维化和地图样萎缩发生,凸显了抗VEGF治疗的局限性。为了改善疗效,针对传统抗VEGF药物的替代和补充治疗相继出现。基因治疗通过介导腺相关病毒载体递送治疗性蛋白实现了长期稳定的抗VEGF效果;联合抗血小板衍生生长因子治疗可能通过周细胞弥补抗VEGF治疗的局限性;补体相关的基因治疗则是基于患者对抗VEGF治疗反应性差而开拓的又一新领域。该文就抗VEGF治疗湿性AMD的研究进展做一综述。
王雅芳 , 刘洋 , 罗学廷 . 抗VEGF治疗湿性年龄相关性黄斑变性的回顾与展望[J]. 上海交通大学学报(医学版), 2021 , 41(4) : 530 -534 . DOI: 10.3969/j.issn.1674-8115.2021.04.019
Anti-vascular endothelial growth factor (VEGF) has been the first choice in the treatment of wet age-related macular degeneration (AMD), since ranibizumab went on sale in 2006. However, clinical studies have suggested that the visual acuity returned to a baseline level several years after anti-VEGF therapy, with the occurrence of retinal fibrosis and geomorphologic atrophy, highlighting the limit of this treatment. In order to improve the efficacy, replacement and supplementation of traditional anti-VEGF emerged successively. Gene therapy achieved long-term and stable anti-VEGF effect by mediating therapeutic proteins delivered by adeno-associated virus vectors. Treatment combined with anti-platelet-derived growth factor may compensate for the limitations of anti-VEGF therapy through peripheral cells. Complement-related gene therapy is a new field based on the poor reactivity of patients against VEGF. This article reviews the progress of anti-VEGF in the treatment of wet AMD.
1 | Schnabolk G. Systemic inflammatory disease and AMD comorbidity[J]. Adv Exp Med Biol, 2019, 1185: 27-31. |
2 | Wu MJ, Liu YM, Zhang H, et al. Intravenous injection of l-aspartic acid β-hydroxamate attenuates choroidal neovascularization via anti-VEGF and anti-inflammation[J]. Exp Eye Res, 2019, 182: 93-100. |
3 | Hasanreisoglu M, Mahajan S, Ozdemir HB, et al. Fungal endogenous endophthalmitis during pregnancy as a complication of in-vitro fertilization[J]. Ocul Immunol Inflamm, 2019: 1-4. |
4 | Sachdeva MM, Moshiri A, Leder HA, et al. Endophthalmitis following intravitreal injection of anti-VEGF agents: long-term outcomes and the identification of unusual micro-organisms[J]. J Ophthalmic Inflamm Infect, 2016, 6(1): 2. |
5 | Kook D, Wolf A, Neubauer AS, et al. Retinal pigment epithelial tears after intravitreal injection of bevacizumab for AMD. Frequency and progress[J]. Ophthalmologe, 2008, 105(2): 158-164. |
6 | Brar VS, Sharma RK, Murthy RK, et al. Bevacizumab neutralizes the protective effect of vascular endothelial growth factor on retinal ganglion cells[J]. Mol Vis, 2010, 16: 1848-1853. |
7 | Garweg JG. Atrophy of the macula in the context of its wet, age-related degeneration: an inescapable consequence of anti-VEGF therapy?[J]. Ophthalmologe, 2016, 113(12): 1036-1045. |
8 | Gemenetzi M, Lotery AJ, Patel PJ. Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents[J]. Eye (Lond), 2017, 31(1): 1-9. |
9 | Young M, Chui LC, Fallah N, et al. Exacerbation of choroidal and retinal pigment epithelial atrophy after anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration[J]. Retina (Philadelphia, Pa), 2014, 34(7): 1308-1315. |
10 | Rofagha S, Bhisitkul RB, Boyer DS, et al. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP)[J]. Ophthalmology, 2013, 120(11): 2292-2299. |
11 | Lai YK, Shen WY, Brankov M, et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy[J]. Gene Ther, 2002, 9(12): 804-813. |
12 | Decaussin M, Sartelet H, Robert C, et al. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival[J]. J Pathol, 1999, 188(4): 369-377. |
13 | Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR[J]. Biochem Biophys Res Commun, 1996, 226(2): 324-328. |
14 | Lai CM, Shen WY, Brankov M, et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys[J]. Mol Ther, 2005, 12(4): 659-668. |
15 | Lai CM, Estcourt MJ, Wikstrom M, et al. rAAV.sFlt-1 gene therapy achieves lasting reversal of retinal neovascularization in the absence of a strong immune response to the viral vector[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4279-4287. |
16 | Lai CM, Estcourt MJ, Himbeck RP, et al. Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates[J]. Gene Ther, 2012, 19(10): 999-1009. |
17 | Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395-2403. |
18 | Constable IJ, Pierce CM, Lai CM, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration[J]. EBioMedicine, 2016, 14: 168-175. |
19 | Rakoczy PE, Magno AL, Lai CM, et al. Subanalysis of data from rAAV.sFLT-1 phase 1 and 2a randomized gene therapy trials for wet age-related macular degeneration[R]. Honolulu: Association for Research in Vision and Ophthalmology, 2018. |
20 | Heier JS, Kherani S, Desai S, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet, 2017, 390(10089): 50-61. |
21 | Pechan P, Rubin H, Lukason M, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization[J]. Gene Ther, 2009, 16(1): 10-16. |
22 | Lukason M, DuFresne E, Rubin H, et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule[J]. Mol Ther, 2011, 19(2): 260-265. |
23 | Maclachlan TK, Lukason M, Collins M, et al. Preclinical safety evaluation of AAV2-sFLT01: a gene therapy for age-related macular degeneration[J]. Mol Ther, 2011, 19(2): 326-334. |
24 | Reid CA, Nettesheim ER, Connor TB, et al. Development of an inducible anti-VEGF rAAV gene therapy strategy for the treatment of wet AMD[J]. Sci Rep, 2018, 8(1): 11763. |
25 | Ohr M, Kaiser PK. Intravitreal aflibercept injection for neovascular (wet) age-related macular degeneration[J]. Expert Opin Pharmacother, 2012, 13(4): 585-591. |
26 | Groher F, Suess B. Synthetic riboswitches: a tool comes of age[J]. Biochim Biophys Acta, 2014, 1839(10): 964-973. |
27 | Regenxbio announces IND active for phase I trial of RGX-314 to treat wet age-related macular degeneration[EB/OL].(2017-02-14)[2020-07-01].. |
28 | Arkady L, Erik W, Tomas SA, et al. Safety of subretinal delivery of RGX-314 (AAV8-anti-VEGF fab) in the non-human primate as assessed by full-field ERG[R]. Honolulu: Association for Research in Vision and Ophthalmology, 2018. |
29 | Regenxbio announces additional positive interim phase I trial update for RGX-314 for the treatment of wet AMD at the American academy of ophthalmology 2018 meetingannual [EB/OL].(2018-10-26)[2020-07-01].. |
30 | Jaffe GJ, Eliott D, Wells JA, et al. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration[J]. Ophthalmology, 2016, 123(1): 78-85. |
31 | Caporarello N, D'Angeli F, Cambria MT, et al. Pericytes in microvessels: from "mural" function to brain and retina regeneration[J]. Int J Mol Sci, 2019, 20(24): E6351. |
32 | Trost A, Lange S, Schroedl F, et al. Brain and retinal pericytes: origin, function and role[J]. Front Cell Neurosci, 2016, 10: 20. |
33 | Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration[J]. Exp Eye Res, 2016, 142: 19-25. |
34 | Luo XT, Yang SQ, Liang J, et al. Choroidal pericytes promote subretinal fibrosis after experimental photocoagulation[J]. Dis Model Mech, 2018, 11(4): dmm032060. |
35 | Jaffe GJ, Ciulla TA, Ciardella AP, et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial[J]. Ophthalmology, 2017, 124(2): 224-234. |
36 | Mitchell TS, Bradley J, Robinson GS, et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels[J]. Angiogenesis, 2008, 11(2): 141-151. |
37 | Jo N, Mailhos C, Ju MH, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization[J]. Am J Pathol, 2006, 168(6): 2036-2053. |
38 | Corporation Ophthotech.Ophthotech announces results from third phase 3 trial of Fovista? in wet age-related macular degeneration[EB/OL].(2017-08-14)[2020-07-01].?. |
39 | Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(3): 656-666. |
40 | Sharma S, Toth CA, Daniel E, et al. Macular morphology and visual acuity in the second year of the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2016, 123(4): 865-875. |
41 | Mohamad NA, Ramachandran V, Ismail P, et al. Analysis of the association between CFH Y402H polymorphism and response to intravitreal ranibizumab in patients with neovascular age-related macular degeneration (nAMD)[J]. Bosn J Basic Med Sci, 2018, 18(3): 260-267. |
42 | Toomey CB, Johnson LV, Bowes Rickman C. Complement factor H in AMD: bridging genetic associations and pathobiology[J]. Prog Retin Eye Res, 2018, 62: 38-57. |
43 | Mullins RF, Schoo DP, Sohn EH, et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning[J]. Am J Pathol, 2014, 184(11): 3142-3153. |
44 | Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization[J]. J Immunol, 2005, 174(1): 491-497. |
45 | Schnabolk G, Beon MK, Tomlinson S, et al. New insights on complement inhibitor CD59 in mouse laser-induced choroidal neovascularization: mislocalization after injury and targeted delivery for protein replacement[J]. J Ocul Pharmacol Ther, 2017, 33(5): 400-411. |
46 | Ramo K, Cashman SM, Kumar-Singh R. Evaluation of adenovirus-delivered human CD59 as a potential therapy for AMD in a model of human membrane attack complex formation on murine RPE[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 4126-4136. |
47 | Cashman SM, Ramo K, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration[J]. PLoS One, 2011, 6(4): e19078. |
/
〈 |
|
〉 |