创新团队成果专栏

人源MDN1蛋白质的电镜结构研究

  • 许云涛 ,
  • 李明月 ,
  • 雷鸣
展开
  • 上海交通大学医学院附属第九人民医院上海精准医学研究院,上海 200125
许云涛(1995—),男,硕士生;电子信箱:xyt347590681@sjtu.edu.cn

网络出版日期: 2021-05-27

基金资助

国家自然科学基金(31525007)

Electron microscopic study of the human MDN1 protein

  • Yun-tao XU ,
  • Ming-yue LI ,
  • Ming LEI
Expand
  • Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China

Online published: 2021-05-27

Supported by

National Natural Science Foundation of China(31525007)

摘要

目的·利用负染电镜技术分析人源midasin AAA-ATPase 1(MDN1,又称Rea1)蛋白质结构。方法·利用CRISPR/Cas9基因编辑方法在Expi293F细胞内源MDN1蛋白质的氨基端敲入3×FLAG纯化标签,采用ANTI-FLAG? M2 Agarose Affinity Gel亲和层析和甘油密度梯度离心的方法分离纯化目的蛋白质;通过负染色电镜技术和单颗粒(single-particle)重构技术探究人源MDN1蛋白质结构。结果·利用亲和层析及密度梯度离心方法分离纯化获得高纯度、均一性较好的人源MDN1蛋白质样品;采用甲酸铀负染色后利用120 kV电镜初步解析了目的蛋白质MDN1的空间结构。结论·利用单颗粒重构技术搭建了人源MDN1蛋白质的低分辨率的负染模型。

本文引用格式

许云涛 , 李明月 , 雷鸣 . 人源MDN1蛋白质的电镜结构研究[J]. 上海交通大学学报(医学版), 2021 , 41(5) : 559 -564 . DOI: 10.3969/j.issn.1674-8115.2021.05.001

Abstract

Objective

·To study the structure of the human midasin AAA-ATPase 1 (MDN1, Rea1) protein by negative-staining electron microscopy.

Methods

·Using the CRISPR/Cas9 genome editing method, a 3×FLAG affinity tag was inserted into the N-terminus of MDN1 in Expi293F cells. Tagged proteins were isolated via affinity purification with ANTI-FLAG? M2 Agarose Affinity Gel, followed by glycerol density gradient centrifugation. The purified protein sample was then subjected to negative-staining electron microscopy and single particle image analysis.

Results

·The FLAG-tagged endogenous MDN1 proteins with high purity and good homogeneity were obtained using affinity chromatography and density gradient centrifugation. Preliminary study on the structure of human MDN1 was achieved by 120 kV electron microscope after negative staining with uranium formate.

Conclusion

·A low resolution model of human MDN1 protein was achieved by single particle reconstruction analysis.

参考文献

1 Kressler D, Hurt E, Bergler H, et al. The power of AAA-ATPases on the road of pre-60S ribosome maturation: molecular machines that strip pre-ribosomal particles[J]. Biochim Biophys Acta, 2012, 1823(1): 92-100.
2 Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae[J]. Genetics, 2013, 195(3): 643-681.
3 Kater L, Thoms M, Barrio-Garcia C, et al. Visualizing the assembly pathway of nucleolar pre-60S ribosomes[J]. Cell, 2017, 171(7): 1599-1610.e14.
4 Venturi G, Montanaro L. How altered ribosome production can cause or contribute to human disease: the spectrum of ribosomopathies[J]. Cells, 2020, 9(10): 2300
5 Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction[J]. Blood, 2010, 115(16): 3196-3205.
6 Pelava A, Schneider C, Watkins NJ. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease[J]. Biochem Soc Trans, 2016, 44(4): 1086-1090.
7 Konikkat S, Woolford JL. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast[J]. Biochem J, 2017, 474(2): 195-214.
8 Patel S, Latterich M. The AAA team: related ATPases with diverse functions[J]. Trends Cell Biol, 1998, 8(2): 65-71.
9 Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work[J]. Nat Rev Mol Cell Biol, 2005, 6(7): 519-529.
10 Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the nascent ribosome: AAA-ATPases in eukaryotic ribosome biogenesis[J]. Biomolecules, 2019, 9(11): 715.
11 Wendler P, Ciniawsky S, Kock M, Kube S. Structure and function of the AAA+ nucleotide binding pocket[J]. Biochim Biophys Acta, 2012, 1823(1):2-14.
12 Gadal O, Strauss D, Braspenning J, et al. A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits[J]. EMBO J, 2001, 20(14): 3695-3704.
13 Lo YH, Sobhany M, Hsu AL, et al. Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7[J]. Nat Commun, 2019, 10(1): 513.
14 Pertschy B, Saveanu C, Zisser G, et al. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1[J]. Mol Cell Biol, 2007, 27(19): 6581-6592.
15 Pertschy B, Zisser G, Schein H, et al. Diazaborine treatment of yeast cells inhibits maturation of the 60S ribosomal subunit[J]. Mol Cell Biol, 2004, 24(14): 6476-6487.
16 Miles TD, Jakovljevic J, Horsey EW, et al. Ytm1, Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes[J]. Mol Cell Biol, 2005, 25(23): 10419-10432.
17 Galani K, Nissan TA, Petfalski E, et al. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60S subunits[J]. J Biol Chem, 2004, 279(53): 55411-55418.
18 Ulbrich C, Diepholz M, Bassler J, et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits[J]. Cell, 2009, 138(5): 911-922.
19 Li PC, Ma JJ, Zhou XM, et al. Arabidopsis MDN1 is involved in the establishment of a normal seed proteome and seed germination[J]. Front Plant Sci, 2019, 10: 1118.
20 Finkbeiner E, Haindl M, Raman N, et al. SUMO routes ribosome maturation[J]. Nucleus, 2011, 2(6): 527-532.
21 Li PC, Li K, Wang J, et al. The AAA-ATPase MIDASIN 1 functions in ribosome biogenesis and is essential for embryo and root development [J]. Plant Physiol, 2019, 180(1): 289-304.
22 Bassler J, Kallas M, Pertschy B, et al. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly[J]. Mol Cell, 2010, 38(5): 712-721.
23 Nissan TA, Galani K, Maco B, et al. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits[J]. Mol Cell, 2004, 15(2): 295-301.
24 Chen Z, Suzuki H, Kobayashi Y, et al. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis[J]. Cell, 2018, 175(3): 822-834.e18.
25 Sosnowski P, Urnavicius L, Boland A, et al. The CryoEM structure of the Saccharomyces cerevisiae ribosome maturation factor Rea1[J]. Elife. 2018, 7: e39163.
26 Kawashima SA, Chen Z, Aoi Y, et al. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis[J]. Cell, 2016, 167(2): 512-524.
27 Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6): 659-662.
28 Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
29 Tang G, Peng L, Baldwin PR, et al. EMAN2: an extensible image processing suite for electron microscopy[J]. J Struct Biol, 2007, 157(1): 38-46.
30 Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination[J]. J Struct Biol, 2012, 180(3): 519-530.
31 Yang JY, Zhang Y. I-TASSER server: new development for protein structure and function predictions[J]. Nucleic Acids Res, 2015, 43(W1): W174-W181.
32 Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. J Comput Chem, 2004, 25(13): 1605-1612.
文章导航

/