论著 · 基础研究

生物信息学方法筛选胰腺癌进展相关的核心基因

  • 杨鹿笛 ,
  • 王高明 ,
  • 胡仁豪 ,
  • 蒋小华 ,
  • 崔然
展开
  • 1.上海交通大学医学院附属瑞金临床医学院,上海 200025
    2.同济大学附属东方医院普外科,上海 200120
杨鹿笛(1997—),女,博士生;电子信箱:yangludi@sjtu.edu.cn

网络出版日期: 2021-05-27

基金资助

上海市卫生健康委员会科研课题(20204Y0302)

Identification of core genes in pancreatic cancer progression by bioinformatics analysis

  • Lu-di YANG ,
  • Gao-ming WANG ,
  • Ren-hao HU ,
  • Xiao-hua JIANG ,
  • Ran CUI
Expand
  • 1.Ruijin College of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2.Department of General Surgery, East Hospital Affiliated Tongji University, Shanghai 200120, China

Online published: 2021-05-27

Supported by

Research Project of Shanghai Municipal Health Commission(20204Y0302)

摘要

目的·筛选胰腺癌进展相关的核心基因和关键通路。方法·通过GEO(Gene Expression Omnibus)数据库检索筛选得到包含45例胰腺癌组织和45例癌旁正常组织的基因芯片数据集GSE28735。采用GEO2R在线分析工具提取癌组织及癌旁正常组织的基因,联合RStudio软件筛选差异表达基因(differentially expressed genes,DEGs)并对其进行可视化处理。通过基因功能注释在线工具DAVID对差异表达显著的基因进行基因本体(gene ontology,GO)功能富集和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析。利用交互基因检索工具STRING及Cytoscape软件构建蛋白质-蛋白质相互作用(protein-protein interaction,PPI)网络,结合节点度值进一步筛选核心基因。通过基因表达谱分析数据库GEPIA对179例胰腺癌中核心基因的表达水平与患者总生存期(overall survival,OS)、无病生存期(disease free survival,DFS)及肿瘤分期的关系进行分析。结果·从GSE28735芯片中筛选得到131个DEGs,其中表达上调的基因115个,表达下调的基因16个。GO功能富集分析显示DEGs主要在细胞黏附、质膜、蛋白质结合方面富集。KEGG通路富集提示磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)是DEGs富集的主要信号通路。通过PPI网络筛选得到5个核心基因,分别为纤维连接蛋白1(fibronectin 1,FN1)、间质表皮转化因子(mesenchymal to epithelial transition factor,MET)、层粘连蛋白β3(polyclonal antibody to laminin β3,LAMB3)、层粘连蛋白α3(laminin subunit α3,LAMA3)、整合素亚单位α3(integrin subunit α3,ITGA3)。MET、LAMA3、LAMB3ITGA3的表达水平均与胰腺癌患者OS有关,仅METLAMB3ITGA3的表达水平与胰腺癌患者DFS有关,且基因低表达组的预后明显优于基因高表达组。FN1METLAMA3LAMB3的表达水平在不同分期胰腺癌组织中的差异存在统计学意义。结论·胰腺癌中异常表达的FN1METLAMB3LAMA3ITGA3与细胞黏附、质膜组分、蛋白质结合功能的改变和PI3K/AKT通路相关,METLAMB3的表达升高可能预示胰腺癌患者的不良预后。

本文引用格式

杨鹿笛 , 王高明 , 胡仁豪 , 蒋小华 , 崔然 . 生物信息学方法筛选胰腺癌进展相关的核心基因[J]. 上海交通大学学报(医学版), 2021 , 41(5) : 571 -578 . DOI: 10.3969/j.issn.1674-8115.2021.05.003

Abstract

Objective

·To select pancreatic cancer progression-related core genes and key pathways.

Methods

·The dataset GSE28735 for pancreatic cancer was obtained by searching and screening in the Gene Expression Omnibus (GEO) database. Genes in 45 cases of cancer tissues and 45 cases of normal tissues adjacent to cancer were extracted by GEO2R and combined with RStudio to screen and visualize differentially expressed genes (DEGs). Genes with significant differential expression were analyzed by gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis through the gene utilization function annotation online tool DAVID. The protein-protein interaction (PPI) network was constructed by using the interactive gene retrieval tool, STRING and Cytoscape, to further screen core genes based on the node degree value. The relationship between the expression levels of core genes and overall survival (OS), disease-free survival (DFS) and tumor stage of 179 cases of patients was analyzed through the gene expression profile analysis database GEPIA.

Results

·A total of 131 DEGs were screened from the dataset GSE28735, including 115 up-regulated genes and 16 down-regulated genes. GO function enrichment analysis showed that DEGs were mainly enriched in cell adhesion, plasma membrane, and protein binding. KEGG pathway enrichment suggested that phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) was the main signaling pathway for DEG enrichment. Five core genes, fibronectin1 (FN1), mesenchymal to epithelial transition factor (MET), polyclonal antibody to laminin β3 (LAMB3), laminin subunit α3 (LAMA3), and integrin subunit α3 (ITGA3),were obtained through PPI network screening. The expression levels of MET, LAMA3, LAMB3 and ITGA3 were associated with OS of patients, and the expression levels of MET, LAMB3 and ITGA3 were associated with DFS. The prognosis of low gene expression group was significantly better than that of high gene expression group. There were significant differences in the expression levels of FN1, MET, LAMA3 and LAMB3 in the different stages of pancreatic cancer.

Conclusion

·The abnormal expression of FN1, MET, LAMB3, LAMA3 and ITGA3 is related to the changes of cell adhesion, plasma membrane component, protein binding function and PI3K/Akt pathway. The increased expression of MET and LAMB3 may predict poor prognosis of patients with pancreatic cancer.

参考文献

1 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
2 Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017[J]. Acta Oncol, 2016, 55(9/10): 1158-1160.
3 Lin QJ, Yang F, Jin C, et al. Current status and progress of pancreatic cancer in China[J]. World J Gastroenterol, 2015, 21(26): 7988-8003.
4 Mayo SC, Nathan H, Cameron JL, et al. Conditional survival in patients with pancreatic ductal adenocarcinoma resected with curative intent[J]. Cancer, 2012, 118(10): 2674-2681.
5 de Sá MC, Sim?o ANC, de Medeiros FA, et al. Cell adhesion molecules and plasminogen activator inhibitor type-1 (PAI-1) in patients with rheumatoid arthritis: influence of metabolic syndrome[J]. Clin Exp Med, 2018, 18(4): 495-504.
6 Bendas G, Borsig L. Heparanase in cancer metastasis: heparin as a potential inhibitor of cell adhesion molecules[J]. Adv Exp Med Biol, 2020, 1221: 309-329.
7 Bergmann F, Wandschneider F, Sipos B, et al. Elevated L1CAM expression in precursor lesions and primary and metastastic tissues of pancreatic ductal adenocarcinoma[J]. Oncol Rep, 2010, 24(4): 909-915.
8 Geismann C, Morscheck M, Koch D, et al. Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor β1- and slug-dependent: role in malignant transformation of pancreatic cancer[J]. Cancer Res, 2009, 69(10): 4517-4526.
9 Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment[J]. Annu Rev Med, 2016, 67: 11-28.
10 Liang H, Mokrani A, Chisomo-Kasiya H, et al. Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala[J]. Fish Physiol Biochem, 2019, 45(2): 719-732.
11 Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway[J]. Pharmacol Ther, 2014, 142(2): 164-175.
12 Akinleye A, Avvaru P, Furqan M, et al. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics[J]. J Hematol Oncol, 2013, 6(1): 88.
13 Sierra JR, Tsao MS. C-MET as a potential therapeutic target and biomarker in cancer[J]. Ther Adv Med Oncol, 2011, 3(1): S21-S35.
14 Ou SH, Kwak EL, Siwak-Tapp C, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification[J]. J Thorac Oncol, 2011, 6(5): 942-946.
15 Li Y, Chen CQ, He YL, et al. Abnormal expression of E-cadherin in tumor cells is associated with poor prognosis of gastric carcinoma[J]. J Surg Oncol, 2012, 106(3): 304-310.
16 di Renzo MF, Olivero M, Giacomini A, et al. Overexpression and amplification of themet/HGF receptor gene during the progression of colorectal cancer[J]. Clin Cancer Res, 1995, 1(2): 147-154.
17 Garcia S, Dalès JP, Jacquemier J, et al. C-Met overexpression in inflammatory breast carcinomas: automated quantification on tissue microarrays[J]. Br J Cancer, 2007, 96(2): 329-335.
18 Radaeva S, Ferreira-Gonzalez A, Sirica AE. Overexpression of C-NEU and C-MET during rat liver cholangiocarcinogenesis: a link between biliary intestinal Metaplasia and mucin-producing cholangiocarcinoma[J]. Hepatology, 1999, 29(5): 1453-1462.
19 di Renzo MF, Poulsom R, Olivero M, et al. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer[J]. Cancer Res, 1995, 55(5): 1129-1138.
20 Neuzillet C, Couvelard A, Tijeras-Raballand A, et al. High c-Met expression in stage Ⅰ?Ⅱ pancreatic adenocarcinoma: proposal for an immunostaining scoring method and correlation with poor prognosis[J]. Histopathology, 2015, 67(5): 664-676.
21 Hervieu A, Kermorgant S. The role of PI3K in Met driven cancer: a recap[J]. Front Mol Biosci, 2018, 5: 86.
22 Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma[J]. Nat Rev Cancer, 2007, 7(5): 370-380.
23 Stemmler S, Parwez Q, Petrasch-Parwez E, et al. Association of variation in the LAMA3 gene, encoding the α-chain of laminin 5, with atopic dermatitis in a German case-control cohort[J]. BMC Dermatol, 2014, 14: 17.
24 Castro BGR, Dos Reis R, Cintra GF, et al. Predictive factors for surgical morbidities and adjuvant chemotherapy delay for advanced ovarian cancer patients treated by primary debulking surgery or interval debulking surgery[J]. Int J Gynecol Cancer, 2018, 28(8): 1520-1528.
25 Lincoln V, Cogan J, Hou Y, et al. Gentamicin induces LAMB3 nonsense mutation readthrough and restores functional laminin 332 in junctional epidermolysis bullosa[J]. PNAS, 2018, 115(28): E6536-E6545.
26 Svoboda M, Hlobilová M, Mare?ová M, et al. Comparison of suction blistering and tape stripping for analysis of epidermal genes, proteins and lipids[J]. Arch Dermatol Res, 2017, 309(9): 757-765.
27 Wang YH, Jin YX, Bhandari A, et al. Upregulated LAMB3 increases proliferation and metastasis in thyroid cancer[J]. Onco Targets Ther, 2018, 11: 37-46.
28 Pan ZF, Li L, Fang QL, et al. Analysis of dynamic molecular networks for pancreatic ductal adenocarcinoma progression[J]. Cancer Cell Int, 2018, 18: 214.
29 Jung SN, Lim HS, Liu LH, et al. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals[J]. Sci Rep, 2018, 8(1): 2718.
30 Huang WJ, Gu JY, Tao T, et al. MiR-24-3p inhibits the progression of pancreatic ductal adenocarcinoma through LAMB3 downregulation[J]. Front Oncol, 2019, 9: 1499.
31 Zhang H, Pan YZ, Cheung M, et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway[J]. Cell Death Dis, 2019, 10(3): 230.
文章导航

/