论著 · 基础研究

细胞间黏附分子-1在CD4+ T细胞辅助B细胞产生抗体中的作用和临床意义

  • 赵倩 ,
  • 张美玉 ,
  • 季萍 ,
  • 汪佳远 ,
  • 王树军 ,
  • 刘帅 ,
  • 王颖
展开
  • 1.上海交通大学医学院附属仁济医院检验科,上海 200127
    2.上海交通大学医学院上海市免疫学研究所,上海 200025
赵倩(1989—),女,检验技师,学士;电子信箱:zq_717@163.com

网络出版日期: 2021-05-27

基金资助

上海市优秀学科带头人计划(2018XD1403300)

Role and clinical significance of intercellular adhesion molecule-1 in CD4+ T cells assisting B cells to produce antibodies

  • Qian ZHAO ,
  • Mei-yu ZHANG ,
  • Ping JI ,
  • Jia-yuan WANG ,
  • Shu-jun WANG ,
  • Shuai LIU ,
  • Ying WANG
Expand
  • 1.Clinical Laboratory Department, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
    2.Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China

Online published: 2021-05-27

Supported by

Shanghai Outstanding Academic Leadership Project(2018XD1403300)

摘要

目的·探讨细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)在CD4+ T细胞辅助B细胞产生抗体中的作用,以及ICAM-1与系统性红斑狼疮(systemic lupus erythematosus,SLE)的相关性。方法·①选取2018年10月—2020年5月在上海交通大学医学院附属仁济医院风湿科就诊的SLE患者50例(SLE组)及仁济医院体检中心健康人60例(健康对照组,即HC组)。采用流式细胞术分析2组样本外周血CD4+ T细胞表面ICAM-1表达水平,酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测2组样本血清中可溶性ICAM-1(soluble ICAM-1,sICAM-1)含量。②通过密度梯度离心法分离健康人样本外周血单个核细胞,体外经α-CD3/28激活于24、48、72 h采用流式细胞术分析CD4+ T细胞表面ICAM-1表达水平,ELISA检测培养上清液中sICAM-1含量。③将健康人CD4+ T细胞-B细胞体外共培养,分别设立对照组、刺激组、阻断抗体处理组,12 d后采用ELISA检测3组培养上清液中IgG含量。结果·①SLE组外周血CD4+ T细胞表面ICAM-1表达水平以及血清中sICAM-1含量均较HC组升高(均P<0.05)。相关分析显示,CD4+ T细胞表面ICAM-1表达水平与红细胞沉降率呈正相关,血清sICAM-1含量与抗双链DNA抗体、IgG水平呈正相关(均P<0.05)。②健康人CD4+ T细胞表面ICAM-1表达水平和上清液中sICAM-1含量随着α-CD3/28刺激时间的延长而升高。③共培养后,刺激组上清液中IgG含量较对照组升高,而阻断抗体处理组较刺激组下降(均P<0.05)。结论·ICAM-1分子促进CD4+ T细胞-B细胞相互作用后IgG的产生,可作为SLE治疗的潜在靶点。

本文引用格式

赵倩 , 张美玉 , 季萍 , 汪佳远 , 王树军 , 刘帅 , 王颖 . 细胞间黏附分子-1在CD4+ T细胞辅助B细胞产生抗体中的作用和临床意义[J]. 上海交通大学学报(医学版), 2021 , 41(5) : 588 -594 . DOI: 10.3969/j.issn.1674-8115.2021.05.005

Abstract

Objective

·To investigate the role of intercellular adhesion molecule-1 (ICAM-1) in CD4+ T cells assisting B cells to produce antibodies, and the correlation between ICAM-1 and systemic lupus erythematosus (SLE).

Methods

·①From October 2018 to May 2020, 50 SLE patients (SLE group) of Rheumatology Department and 60 healthy people (HC group) of medical examination center from Renji Hospital, Shanghai Jiao Tong University School of Medicine were recruited. Flow cytometry was used to analyze the expression of ICAM-1 on the surface of CD4+ T cells in peripheral blood of the two groups. Enzyme-linked immunosorbent assay (ELISA) was used to detect the soluble ICAM-1 (sICAM-1) level in serum of the two groups. ②Peripheral blood mononuclear cells (PBMCs) of healthy people were isolated by density gradient centrifugation, and activated by α-CD3/28 in vitro at 24, 48 and 72 h, respectively. The expression of ICAM-1 on the surface of CD4+ T cells was analyzed by flow cytometry, and the level of sICAM-1 in the supernatant was detected by ELISA. ③CD4+ T cells and B cells of healthy people were co-cultured in vitro, which were divided into control group, stimulation group and antibody blockade group. After 12 days, the IgG level in the co-culture supernatant of the three groups was detected by ELISA.

Results

·①The expression of ICAM-1 on the surface of CD4+ T cells in peripheral blood and the level of sICAM-1 in serum of the SLE group was higher than that of the HC group (both P<0.05). Correlation analysis showed that ICAM-1 expression on the surface of CD4+ T cells was positively correlated with erythrocyte sedimentation rate, and serum sICAM-1 level was positively correlated with anti-dsDNA antibody and IgG level (all P<0.05). ②The expression of ICAM-1 on the surface of CD4+ T cells and the level of sICAM-1 in the supernatant of healthy people were significantly up-regulated gradually along with the stimulation α-CD3/28. ③After co-culture, the IgG level in the supernatant of the stimulation group was higher than that in the control group, while IgG lever in antibody blockade group was lower than that in the stimulation group (both P<0.05).

Conclusion

·ICAM-1 can promote the production of IgG after the interaction of CD4+ T cells and B cells, which can be used as a potential target for the treatment of SLE.

参考文献

1 GuoLiu RN, Cheng QY, Zhou HY, et al. Elevated blood and urinary ICAM-1 is a biomarker for systemic lupus erythematosus: a systematic review and meta-analysis[J]. Immunol Invest, 2020, 49(1/2): 15-31.
2 凌燕, 孙凌云. 黏附分子在系统性红斑狼疮发病机制中的作用[J]. 中华风湿病学杂志, 2000, 4(3): 186-188.
3 Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades[J]. Free Radic Biol Med, 2000, 28(9): 1379-1386.
4 Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis[J]. J Leukoc Biol, 2020, 108(3): 787-799.
5 林勇. 细胞粘附、影响因素及粘附分子基因表达的调控[D]. 北京: 北京协和医学院, 1998.
6 Sharief MK, Noori MA, Ciardi M, et al. Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis. Correlation with TNF-α and blood-brain barrier damage[J].J Neuroimmunol, 1993, 43(1/2): 15-21.
7 Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40(9): 1725.
8 李玉梅, 刘帅, 刘芝翠, 等. ICAM-1参与系统性红斑狼疮中免疫球蛋白产生的实验研究[J]. 中国免疫学杂志, 2020, 36(11): 1358-1364.
9 He P, Srikrishna G, Freeze HH. N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response[J]. Glycobiology, 2014, 24(4): 392-398.
10 Jiang L, Hu JL, Feng JT, et al. Substrate stiffness of endothelial cells directs LFA-1/ICAM-1 interaction: a physical trigger of immune-related diseases?[J]. Clin Hemorheol Microcirc, 2016, 61(4): 633-643.
11 Wingren AG, Parra E, Varga M, et al. T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles[J]. Crit Rev Immunol, 2017, 37(2/3/4/5/6): 463-481.
12 da Rosa Franchi Santos LF, Costa NT, Maes M, et al. Influence of treatments on cell adhesion molecules in patients with systemic lupus erythematosus and rheumatoid arthritis: a review[J]. Inflammopharmacology, 2020, 28(2): 363-384.
13 Song G, Lazar GA, Kortemme T, et al. Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion[J]. J Biol Chem, 2006, 281(8): 5042-5049.
14 Ise W, Fujii K, Shiroguchi K, et al. T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate[J]. Immunity, 2018, 48(4): 702-715.e4.
15 Tocut M, Shoenfeld Y, Zandman-Goddard G. Systemic lupus erythematosus: an expert insight into emerging therapy agents in preclinical and early clinical development[J]. Expert Opin Investig Drugs, 2020, 29(10): 1151-1162.
16 Kridin K, Zelber-Sagi S, Comaneshter D, et al. Bipolar disorder associated with another autoimmune disease-pemphigus: a population-based study[J]. Can J Psychiatry, 2018, 63(7): 474-480.
17 Zhao N, Zou HJ, Qin J, et al. MicroRNA-326 contributes to autoimmune thyroiditis by targeting the Ets-1 protein[J]. Endocrine, 2018, 59(1): 120-129.
18 Laman JD, Claassen E, Noelle RJ. Functions of CD40 and its Ligand, gp39 (CD40L)[J]. Crit Rev Immunol, 2017, 37(2/3/4/5/6): 371-420.
19 Mittereder N, Kuta E, Bhat G, et al. Loss of immune tolerance is controlled by ICOS in Sle1 mice[J]. J Immunol, 2016, 197(2): 491-503.
文章导航

/