论著 · 公共卫生

中国梅毒发病率的时空分布特征分析

  • 田婷婷 ,
  • 侯雅宣 ,
  • 李雨晴 ,
  • 祁鸿姣 ,
  • 陈默 ,
  • 吕美霞
展开
  • 华中科技大学同济医学院公共卫生学院流行病与卫生统计学系,武汉 430030
田婷婷(1994—),女,硕士生;电子信箱:m201775108@hust.edu.cn

网络出版日期: 2021-05-27

Spatio-temporal analysis of incidence rate of syphilis in China

  • Ting-ting TIAN ,
  • Ya-xuan HOU ,
  • Yu-qing LI ,
  • Hong-jiao QI ,
  • Mo CHEN ,
  • Mei-xia Lü
Expand
  • Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Online published: 2021-05-27

摘要

目的·了解2017年中国内地31个省、直辖市、自治区梅毒流行的时空分布。方法·由中国公共卫生科学数据中心获取2017年中国内地31个省、直辖市、自治区梅毒的发病数据,描述发病率的时间变化特征。采用全局莫兰指数和安瑟伦局部莫兰指数来分析梅毒病例的空间聚集特征,采用基于泊松分布模型的时空扫描分析探索其时空分布特征。结果·2017年中国内地31个省、直辖市、自治区梅毒总发病数为475 860例,年发病率为34.49/10万,其中隐性梅毒占比最大,达到76.78%(365 353/475 860),8月份发病率最高。从空间分布上看,梅毒发病率最高的省级单位为新疆维吾尔自治区,达91.80/10万。隐性、二期、三期、胎传梅毒均呈现空间正自相关(均P<0.05)。上海市、江苏省、浙江省表现为二期、三期梅毒高-高聚集(均P<0.05),而新疆维吾尔自治区、西藏自治区则表现为胎传梅毒高-高聚集(P=0.000)。时空扫描分析发现4月至9月,福建省、江西省、浙江省、上海市、江苏省、湖南省、安徽省和广东省是梅毒发病主聚集区域(P=0.000),此聚集区内梅毒发病风险是聚集区外的1.59倍。结论·中国内地梅毒发病率较高;各省、直辖市、自治区重点防控的梅毒类型和时段存在差异,其中4月至9月,福建省、江西省、浙江省、上海市、江苏省、湖南省、安徽省和广东省是中国内地梅毒防控的重点区域。

本文引用格式

田婷婷 , 侯雅宣 , 李雨晴 , 祁鸿姣 , 陈默 , 吕美霞 . 中国梅毒发病率的时空分布特征分析[J]. 上海交通大学学报(医学版), 2021 , 41(5) : 648 -652 . DOI: 10.3969/j.issn.1674-8115.2021.05.015

Abstract

Objective

·To get the spatio-temporal distribution of the syphilis epidemic in 31 provinces, municipalities directly under the Central Government and autonomous regions of the mainland of China in 2017.

Methods

·The data of syphilis incidence in 31 provinces, municipalities and autonomous regions of the mainland of China in 2017 were obtained from the China Public Health Science Data Center, and the time distrbution characteristics of the incidence rates were described. The global Moran′s I index and Anselin local Moran′s I index were used to analyze the spatial cluster characteristics of the syphilis cases, and then space-time scan analysis based on Poisson distribution was used to explore the spatio-temporal distribution characteristics.

Results

·In 2017, the number of syphilis cases in the 31 provinces, municipalities, and autonomous regions of the mainland of China was 475 860, and the incidence rate was 34.49/100 000. Latent syphilis accounted for most of the cases, reaching 76.78% (365 353/475 860). August had the highest incidence rate. For the spatial distribution, Xinjiang Uygur Autonomous Region was the provincial-level unit with the highest incidence rate of syphilis, reaching 91.80/100 000. The incidence rates of latent, secondary, tertiary, and congenital syphilis appeared with positive spatial autocorrelation (all P<0.05). The high-high clusters of secondary and tertiary syphilis appeared in Shanghai, Jiangsu, and Zhejiang (all P<0.05), respectively, while the high-high clusters of congenital syphilis appeared in Xinjiang and Tibet (P=0.000). The results of space-time scan analysis showed that the main cluster appeared from April to September in Fujian, Jiangxi, Zhejiang, Shanghai, Jiangsu, Hunan, Anhui, and Guangdong (P=0.000). Compared with the outside area, the relative risk of syphilis in this cluster was 1.59 times.

Conclusion

·The incidence rate of syphilis in China is relatively high. There are differences in the types and periods of syphilis prevention and control among provinces, municipalities and autonomous regions. From April to September, Fujian, Jiangxi, Zhejiang, Shanghai, Jiangsu, Hunan, Anhui and Guangdong are the key areas for syphilis prevention and control in the mainland of China.

参考文献

1 国家卫生和计划生育委员会. 梅毒诊断: [S]. 北京: 中国标准出版社, 2018.
2 Buchacz K, Patel P, Taylor M, et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections[J]. AIDS, 2004, 18(15): 2075-2079.
3 Gong XD, Zhang GC, Ye SZ, et al. Epidemiological analysis of syphilis in China from 1985 to 2000[J]. Chin J Sex Transm Inf, 2001, 1(1): 1-6.
4 胡冰雪, 曲波, 刘洁, 等. 中国1990—2011年梅毒流行特征分析与趋势预测[J]. 现代预防医学, 2014, 41(6): 961-963, 971.
5 Yang GH, Wang Y, Zeng YX, et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010[J]. Lancet, 2013, 381(9882): 1987-2015.
6 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.
7 Cheng YJ, Norris J, Bao CJ, et al. Geographical information systems-based spatial analysis and implications for syphilis interventions in Jiangsu Province, People′s Republic of China[J]. Geospat Health, 2012, 7(1): 63-72.
8 Zhang W, Du Z, Tang S, et al. Syphilis in the economic center of South China: results from a real-time, web-based surveillance program[J]. BMC Infect Dis, 2015, 15: 318.
9 梁慕明. 采用圆形分布法探讨宝山区梅毒发病的季节性[J]. 职业与健康, 2007, 23(12): 1011-1012.
10 Zhang W, Du Z, Huang S, et al. The association between human perceived heat and early-stage syphilis and its variance: results from a case-report system[J]. Sci Total Environ, 2017, 593/594: 773-778.
11 高雪莲, 王新迪, 田莉, 等. 2012年乌鲁木齐市国家级性病监测点梅毒报告病例现场核查准确率分析[J]. 疾病预防控制通报, 2013, 28(5): 17-19.
12 姚强, 费丽娟, 孔文明, 等. 浙江省梅毒重复报告情况调查[J]. 预防医学, 2019, 31(12): 1251-1253.
13 岳晓丽, 龚向东, 蒋宁, 等. 我国性病病例报告系统评估结果的初步分析[J]. 中国艾滋病性病, 2015, 21(10): 875-878.
14 许雷涛, 张义, 王林江, 等. 陕西省渭南市网络报告梅毒病例质量及影响因素分析[J]. 中国皮肤性病学杂志, 2017, 31(3): 296-298.
15 刘宗霞. 邢台市医疗机构性病防治相关科室梅毒报告情况调查[J]. 中国皮肤性病学杂志, 2017, 31(7): 764-766.
16 林威, 陈磊, 沈鸿程, 等. 广东省国家级性病监测点后天梅毒分期正确率及影响因素分析[J]. 中国艾滋病性病, 2018, 24(1): 99-100, 104.
17 段成荣, 赵畅, 吕利丹. 中国流动人口流入地分布变动特征(2000—2015)[J]. 人口与经济, 2020(1): 89-99.
18 张惠林, 陈玉燕, 肖瑶, 等. 2010—2016年我国(不含港澳台)梅毒时空分布及影响因素[J]. 中国医药导报, 2019, 16(26): 57-63,
18 封四.
19 杨振, 王念, 王宇. 中国性病疫情的时空差异与经济驱动机制: 以淋病、梅毒为例[J]. 热带地理, 2016, 36(5): 761-766.
20 张晓芳, 李琛, 何甜田, 等. 湖北省流动人口基本公共卫生服务利用及影响因素分析[J]. 中国公共卫生, 2019, 35(6): 693-696.
21 王雅洁, 龚向东, 岳晓丽, 等. 中国2010年和2015年胎传梅毒空间分布特征[J]. 中华皮肤科杂志, 2018, 51(5): 337-340.
22 龚向东, 岳晓丽, 滕菲, 等. 2000—2013年中国梅毒流行特征与趋势分析[J]. 中华皮肤科杂志, 2014, 47(5): 310-315.
23 杨梅, 杨敬源, 刘冰, 等. 73例先天梅毒儿童母亲孕产期保健影响因素分析[J]. 中国妇幼卫生杂志, 2020, 11(2): 25-27, 31.
24 陈晨春, 唐咸艳. 2008—2013年南宁市各期梅毒发病率的时空异质性特征[J]. 中国皮肤性病学杂志, 2015, 29(11): 1145-1149.
25 秦洁行, 苗玲. 脊髓脊膜血管梅毒一例报道[J]. 上海交通大学学报(医学版), 2006, 26(7): 816-817.
文章导航

/