综述

生长分化因子11在心血管疾病中的作用

  • 蔡明琪 ,
  • 陈焱 ,
  • 林开斌 ,
  • 黄冬
展开
  • 1.上海交通大学附属第六人民医院心内科,上海 200233
    2.上海市武警总队医院重症医学科,上海 200050
蔡明琪(1997—),女,硕士生;电子信箱:cai_mingqi0123@163.com

网络出版日期: 2021-06-29

基金资助

国家自然科学基金(81871102)

Advances in the role of growth differentiation factor 11 in cardiovascular diseases

  • Ming-qi CAI ,
  • Yan CHEN ,
  • Kai-bin LIN ,
  • Dong HUANG
Expand
  • 1.Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
    2.Department of Critical Care Medicine, Armed Police Corps Hospital of Shanghai, Shanghai 200050, China

Online published: 2021-06-29

Supported by

National Natural Science Foundation of China(81871102)

摘要

生长分化因子11(growth differentiation factor 11,GDF11)是转化生长因子β(transforming growth factor-β,TGF-β)超家族的成员之一,是一种广泛存在于人体中的分泌性蛋白,参与早期胚胎发育,与神经调控、骨骼发育、视网膜和肾脏等组织器官的成熟有关。近年来研究表明,GDF11与衰老、心血管疾病有密切联系,但其具体影响和作用机制一直以来存在争议。部分研究认为,GDF11水平升高可以减轻心肌肥大和炎症损伤,改善血管内皮功能,对动脉粥样硬化、心肌缺血再灌注损伤、增龄相关的心血管功能障碍等有积极效果;但是,该结论目前仍存在争议。该文综述了GDF11在心血管疾病领域的研究进展及主要分歧,以期对相关研究的开展提供参考。

本文引用格式

蔡明琪 , 陈焱 , 林开斌 , 黄冬 . 生长分化因子11在心血管疾病中的作用[J]. 上海交通大学学报(医学版), 2021 , 41(6) : 834 -838 . DOI: 10.3969/j.issn.1674-8115.2021.06.023

Abstract

Growth differentiation factor 11 (GDF11) is an important member of transforming growth factor-β (TGF-β) superfamily. As a secreted protein widely distributed in human body, it is associated with many physiological activities, including early embryonic and bone development, neural regulation, and maturation of tissues and organs such as retina and kidney. Recent studies have shown that GDF11 is closely related to aging and cardiovascular diseases, but its specific effects and mechanism are controversial. Some studies have drawn the conclusions that increased levels of GDF11 can reduce myocardial hypertrophy, alleviate inflammatory damage and protect the function of vascular endothelial cells. Meanwhile, some studies have reached the opposite conclusions. So the issue that whether GDF11 has a protective effect on cardiovascular diseases remains uncertain. This article reviews the research progress and essential divergence of GDF11 in the field of cardiovascular diseases, in order to provide reference for future investigation.

参考文献

1 Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015[J]. J Am Coll Cardiol, 2017, 70(1): 1-25.
2 Nakashima M, Toyono T, Akamine A, et al. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis[J]. Mech Dev, 1999, 80(2): 185-189.
3 Oxburgh L. TGF superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population[J]. Development, 2004, 131(18): 4593-4605.
4 Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice[J]. Dev Dyn, 2006, 235(11): 3016-3025.
5 Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Dev Camb Engl, 2011, 138(19): 4131-4142.
6 Li Z, Zeng F, Mitchell AD, et al. Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation[J]. Biochem Biophys Res Commun, 2011, 416(3): 289-292.
7 Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J]. Cell, 2013, 153(4): 828-839.
8 Zhang YH, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease[J]. Oncotarget, 2017, 8(46): 81604-81616.
9 Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis[J]. Crit Rev Biochem Mol Biol, 2019, 54(2): 174-183.
10 Kondás K, Szláma G, Trexler M, et al. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11[J]. J Biol Chem, 2008, 283(35): 23677-23684.
11 Jamaiyar A, Wan W, Janota DM, et al. The versatility and paradox of GDF 11[J]. Pharmacol Ther, 2017, 175: 28-34.
12 Roh JD, Hobson R, Chaudhari V, et al. Activin type II receptor signaling in cardiac aging and heart failure[J]. Sci Transl Med, 2019, 11(482): eaau8680.
13 Su HH, Liao JM, Wang YH, et al. Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury[J]. Basic Res Cardiol, 2019, 114(3): 20.
14 Zhang YH, Cheng F, Du XT, et al. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells[J]. Oncotarget, 2016, 7(11): 12063-12074.
15 Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system[J]. Cardiovasc Res, 2006, 69(1): 15-25.
16 Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Investig, 2017, 127(10): 3770-3783.
17 Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction[J]. Front Cardiovasc Med, 2019, 6: 140.
18 Walker RG, Czepnik M, Goebel EJ, et al. Structural basis for potency differences between GDF8 and GDF11[J]. BMC Biol, 2017, 15(1): 1-22.
19 Tarver T. Heart disease and stroke statistics–2014 update: a report from the American heart association[J]. J Consumer Heal Internet, 2014, 18(2): 209.
20 Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J]. Cell Metab, 2015, 22(1): 164-174.
21 Poggioli T, Vujic A, Yang P, et al. Circulating growth differentiation factor 11/8 levels decline with age[J]. Circ Res, 2016, 118(1): 29-37.
22 Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease[J]. Cell Metab, 2016, 23(6): 1207-1215.
23 Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts[J]. Eur Heart J, 2015, 36(48): 3426-3434.
24 Zhou Y, Ni SS, Song LL, et al. Late-onset administration of GDF11 extends life span and delays development of age-related markers in the annual fish Nothobranchius guentheri[J]. Biogerontology, 2019, 20(2): 225-239.
25 Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014, 344(6184): 649-652.
26 Ozek C, Krolewski RC, Buchanan SM, et al. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice[J]. Sci Rep, 2018, 8(1): 17293.
27 Li H, Li YX, Xiang LW, et al. GDF11 attenuates development of type 2 diabetes via improvement of islet β-cell function and survival[J]. Diabetes, 2017, 66(7): 1914-1927.
28 Aurigemma GP. Diastolic heart failure: a common and lethal condition by any name[J]. N Engl J Med, 2006, 355(3): 308-310.
29 Smith SC, Zhang XX, Zhang XY, et al. GDF11 does not rescue aging-related pathological hypertrophy[J]. Circ Res, 2015, 117(11): 926-932.
30 Zimmers TA, Jiang YL, Wang MJ, et al. Erratum to: exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting[J]. Basic Res Cardiol, 2017, 112(5): 53.
31 Harper SC, Johnson J, Borghetti G, et al. GDF11 decreases pressure overload-induced hypertrophy, but can cause severe cachexia and premature death[J]. Circ Res, 2018, 123(11): 1220-1231.
32 Zhang CJ, Wang Y, Ge ZR, et al. GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and β-MHC through down- regulating CCL11 in mice[J]. Curr Mol Med, 2018, 18(10): 661-671.
33 Duran J, Troncoso M, Lagos D, et al. GDF11 modulates Ca2+-dependent Smad2/3 signaling to prevent cardiomyocyte hypertrophy[J]. Int J Mol Sci, 2018, 19(5): 1508.
34 Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C, et al. GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication[J]. Pharmacol Res, 2019, 146: 104273.
35 Garbern J, Kristl AC, Bassaneze V, et al. Analysis of Cre-mediated genetic deletion of Gdf11 in cardiomyocytes of young mice[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H201-H212.
36 Mei W, Xiang GD, Li YX, et al. GDF11 protects against endothelial injury and reduces atherosclerotic lesion formation in apolipoprotein E-null mice[J]. Mol Ther, 2016, 24(11): 1926-1938.
37 Zhao L, Zhang SH, Cui J, et al. TERT assists GDF11 to rejuvenate senescent VEGFR2+/CD133+ cells in elderly patients with myocardial infarction[J]. Lab Investig J Tech Methods Pathol, 2019, 99(11): 1661-1688.
38 Du GQ, Shao ZB, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury[J]. Basic Res Cardiol, 2016, 112(1): 1-14.
39 Zhou B, Yu YL, Qiu Z, et al. GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats[J]. Acta Cir Bras, 2019, 34(11). DOI:10.1590/s0102-865020190110000006.
40 Zhang XJ, Tan H, Shi ZF, et al. Growth differentiation factor 11 is involved in isoproterenol-induced heart failure[J]. Mol Med Rep, 2019, 19(5): 4109-4118.
41 Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality?[J]. Int J Mol Sci, 2019, 20(14): 3563.
42 Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, et al. GDF11 implications in cancer biology and metabolism. facts and controversies[J]. Front Oncol, 2019, 9: 1039.
文章导航

/