收稿日期: 2022-10-28
录用日期: 2023-03-24
网络出版日期: 2023-03-28
基金资助
国家自然科学基金(82101840)
Research progress in the role and mechanism of lactylation in diseases
Received date: 2022-10-28
Accepted date: 2023-03-24
Online published: 2023-03-28
Supported by
National Natural Science Foundation of China(82101840)
乳酸是细胞呼吸的产物。葡萄糖进入细胞后,在己糖激酶等的催化作用下通过糖酵解代谢成丙酮酸。当细胞氧供充足时,丙酮酸通过线粒体基质中的丙酮酸脱氢酶转化为乙酰辅酶A参与三羧酸循环,为细胞提供必需的能量。当细胞缺氧时,丙酮酸由胞质中的乳酸脱氢酶催化生成乳酸。乳酸不仅为线粒体呼吸提供能量源,还通过自分泌、旁分泌和内分泌等形式在炎症反应、创伤修复、记忆形成和神经保护以及肿瘤生长和转移等病理生理过程中发挥重要作用,影响疾病发展和预后。表观遗传修饰是通过修饰酶共价添加或水解组蛋白和DNA结构中的功能基团以调节基因复制、转录和翻译等过程,影响细胞生物学效应。组蛋白是真核生物染色体的基本结构蛋白,其翻译后修饰诸如甲基化、乙酰化等影响其与DNA双链的亲和性,改变染色质结构,广泛参与基因的表达调控。最新研究发现组蛋白上可以发生乳酰化修饰,即通过对组蛋白上的赖氨酸残基添加乳酸基团,使其作为一种全新的表观遗传修饰发挥作用。随着研究的深入,乳酰化修饰也被证明广泛发生在非组蛋白上。乳酰化修饰的发现扩大了对乳酸参与疾病病理机制的认识。该文主要综述了乳酰化修饰在肿瘤、炎性疾病和神经系统疾病中的作用和机制,以期为相关疾病的研究与诊疗提供新思路。
葛玲玲 , 黄洪军 , 罗艳 . 乳酰化修饰在疾病中的作用及机制研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(3) : 374 -379 . DOI: 10.3969/j.issn.1674-8115.2023.03.014
Lactic acid is a product of cell respiration. After entering into cells, glucose is metabolized to pyruvate by glycolysis. When the oxygen supply is sufficient, pyruvate is converted to acetyl coenzyme A through pyruvate dehydrogenase in the mitochondrial matrix to participate in the tricarboxylic acid cycle and provide necessary energy for cells. Pyruvate is catalysed by lactate dehydrogenase in the cytoplasm to produce lactate while cells are grown under hypoxic conditions. Lactate not only provides energy for mitochondrial respiration, but also plays important roles in inflammatory responser, wound repair, memory formation and neuroprotection as well as tumor growth and metastasis and other pathophysiological processes through autocrine, paracrine, and endocrine forms, which affects the development and prognosis of diseases. Epigenetic modification regulates gene replication, transcription and translation by covalently adding or hydrolyzing functional groups on histones and DNA through related enzymes and affects the biological effects of cells. Histones are the major structural proteins of eukaryotic chromosomes. Their post-translational modifications, such as methylation and acetylation, affect their affinity with DNA, change chromatin structures, and are widely involved in regulation of gene expression. Recent studies have found that histones can undergo lactylation, which is a new epigenetic modification by adding lactate to lysine residues on histones. As the research deepens, numerous evidences reveal that lactylation also occurs on non-histone proteins. The discovery of lactylation has expanded our understanding of lactate functions in the pathogenesis of diseases. In this review, we summarize the roles and mechanisms of lactylation in tumor, inflammatory and neural system diseases, in order to provide new ideas for the research, diagnosis and treatment of these diseases.
Key words: lactic acid; lactylation; tumor; inflammatory disease; neural system disease
1 | XIAO D, HU C X, XU X Z, et al. A d, l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay[J]. Biosens Bioelectron, 2022, 211: 114378. |
2 | DE BARI L, ATLANTE A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming[J]. Cell Mol Life Sci, 2018, 75(15): 2763-2776. |
3 | WARBURG O, WIND F, NEGELEIN E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6): 519-530. |
4 | ZHANG D, TANG Z Y, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |
5 | DAI X F, LV X Y, THOMPSON E W, et al. Histone lactylation: epigenetic mark of glycolytic switch[J]. Trends Genet, 2022, 38(2): 124-127. |
6 | PéREZ-TOMáS R, PéREZ-GUILLéN I. Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment[J]. Cancers (Basel), 2020, 12(11): 3244. |
7 | DE-BRITO N M, DUNCAN-MORETTI J, DA-COSTA H C, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(2): 118604. |
8 | FU S C, HE K X, TIAN C X, et al. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells[J]. Nat Commun, 2020, 11(1): 438. |
9 | RAYCHAUDHURI D, BHATTACHARYA R, SINHA B P, et al. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. |
10 | BROWN T P, BHATTACHARJEE P, RAMACHANDRAN S, et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J]. Oncogene, 2020, 39(16): 3292-3304. |
11 | XIONG J, HE J, ZHU J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82(9): 1660-1677.e10. |
12 | WANG L, LI S S, LUO H H, et al. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages[J]. J Exp Clin Cancer Res, 2022, 41(1): 303. |
13 | LUO Y, YANG Z, YU Y, et al. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer[J]. Int J Biol Macromol, 2022, 222 (Pt B): 2225-2243. |
14 | YANG D W, YIN J, SHAN L Q, et al. Identification of lysine-lactylated substrates in gastric cancer cells[J]. iScience, 2022, 25(7): 104630. |
15 | TUAN T A, HA N T T, XOAY T D, et al. Fibrinolytic impairment and mortality in pediatric septic shock: a single-center prospective observational study[J]. Pediatr Crit Care Med, 2021, 22(11): 969-977. |
16 | CASLIN H L, ABEBAYEHU D, ABDUL QAYUM A, et al. Lactic acid inhibits lipopolysaccharide-induced mast cell function by limiting glycolysis and ATP availability[J]. J Immunol, 2019, 203(2): 453-464. |
17 | WANG L, HE H W, XING Z Q, et al. Lactate induces alternative polarization (M2) of macrophages under lipopolysaccharide stimulation in vitro through G-protein coupled receptor 81[J]. Chin Med J (Engl), 2020, 133(14): 1761-1763. |
18 | BESNIER E, COQUEREL D, KOUADRI G, et al. Hypertonic sodium lactate improves microcirculation, cardiac function, and inflammation in a rat model of sepsis[J]. Crit Care, 2020, 24(1): 354. |
19 | YOO H, IM Y, KO R E, et al. Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes[J]. Sci Rep, 2021, 11(1): 9512. |
20 | YANG K, FAN M, WANG X H, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1): 133-146. |
21 | CHU X, DI C Y, CHANG P P, et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock[J]. Front Immunol, 2021, 12: 786666. |
22 | KACZMARCZYK O, D?BEK-DROBNY A, WO?NIAKIEWICZ M, et al. Fecal levels of lactic, succinic and short-chain fatty acids in patients with ulcerative colitis and crohn disease: a pilot study[J]. J Clin Med, 2021, 10(20): 4701. |
23 | IRAPORDA C, ROMANIN D E, BENGOA A A, et al. Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model[J]. Front Immunol, 2016, 7: 651. |
24 | RANGANATHAN P, SHANMUGAM A, SWAFFORD D, et al. GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis[J]. J Immunol, 2018, 200(5): 1781-1789. |
25 | IRIZARRY-CARO R A, MCDANIEL M M, OVERCAST G R, et al. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation[J]. Proc Natl Acad Sci U S A, 2020, 117(48): 30628-30638. |
26 | LOPEZ KROL A, NEHRING H P, KRAUSE F F, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells[J]. EMBO Rep, 2022, 23(12): e54685. |
27 | PRUETT B S, MEADOR-WOODRUFF J H. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies[J]. Schizophr Res, 2020, 223: 29-42. |
28 | DOGAN A E, YUKSEL C, DU F, et al. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies[J]. Neuropsychopharmacology, 2018, 43(8): 1681-1690. |
29 | PAN R Y, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease[J]. Cell Metab, 2022, 34(4): 634-648.e6. |
30 | KARNIB N, EL-GHANDOUR R, EL HAYEK L, et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases[J]. Neuropsychopharmacology, 2019, 44(6): 1152-1162. |
31 | HAGIHARA H, SHOJI H, OTABI H, et al. Protein lactylation induced by neural excitation[J]. Cell Rep, 2021, 37(2): 109820. |
32 | KINOSHITA T, GOTO T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: a review[J]. Int J Mol Sci, 2019, 20(6): 1461. |
33 | GARANTZIOTIS S. Myofibroblast-macrophage interactions turn sour in fibrotic lungs[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 14-15. |
34 | LI J X, ZHAI X X, SUN X, et al. Metabolic reprogramming of pulmonary fibrosis[J]. Front Pharmacol, 2022, 13: 1031890. |
35 | CUI H C, XIE N, BANERJEE S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 115-125. |
36 | YIN D Q, JIANG N, CHENG C, et al. Protein lactylation and metabolic regulation of the zoonotic parasite Toxoplasma gondii[J]. Genomics Proteomics Bioinformatics, 2022: S1672-S0229(22)00126-7. |
37 | CATHERINE J, MERRICK. Histone lactylation: a new epigenetic axis for host-parasite signalling in malaria?[J]. Trends Parasitol, 2023, 39(1): 12-16. |
38 | YANG Q Y, LIU J, WANG Y, et al. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling[J]. J Biol Chem, 2022, 298(1): 101456. |
39 | WANG N X, WANG W W, WANG X Q, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res, 2022, 131(11): 893-908. |
40 | DONG H Y, ZHANG J J, ZHANG H, et al. YiaC and CobB regulate lysine lactylation in Escherichia coli[J]. Nat Commun, 2022, 13(1): 6628. |
/
〈 |
|
〉 |