论著 · 基础研究

蓝藻丝氨酸蛋白酶抑制剂arthropin的制备及其靶蛋白酶的筛选

  • 许佳伟 ,
  • 周爱武 ,
  • 杨愈丰
展开
  • 1.遵义医科大学珠海校区生物工程系,珠海 519040
    2.上海交通大学基础医学院病理生理学系,上海 200025
许佳伟(1994—),男,硕士生;电子信箱:15820572242@163.com
杨愈丰,电子信箱:yfyang@zmc.edu.cn

收稿日期: 2022-12-08

  录用日期: 2023-04-03

  网络出版日期: 2023-04-28

Preparation and target protease identification of a cyanobacterial serine protease inhibitor, arthropin

  • Jiawei XU ,
  • Aiwu ZHOU ,
  • Yufeng YANG
Expand
  • 1.Department of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China
    2.Department of Pathophysiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai 200025, China
YANG Yufeng, E-mail: yfyang@zmc.edu.cn.

Received date: 2022-12-08

  Accepted date: 2023-04-03

  Online published: 2023-04-28

摘要

目的·制备高纯度的蓝藻丝氨酸蛋白酶抑制剂(serine protease inhibitor,serpin),筛选其靶蛋白酶,并探究其抑制活性。方法·通过氨基酸序列分析,在人类口腔微生物组数据库(eHOMD)发现了一种钝顶节旋藻(Arthrospira platensis)的serpin,将其命名为arthropin;构建融合表达载体pSUMO3-arthropin,将其转入大肠埃希菌BL21(DE3)诱导表达;采用镍离子亲和层析、酶切、反向镍离子亲和层析、阴离子交换层析的4步层析纯化方案将arthropin重组蛋白分离纯化;将arthropin重组蛋白分别与活化的凝血因子Ⅸ(activated factor Ⅸ,FⅨa)、FⅩa、FⅪa、活化的蛋白C(activated protein C,APC)、激肽释放酶1(kallikrein 1,KLK1)等14种丝氨酸蛋白酶共孵育,再利用SDS-PAGE分析共价复合物形成情况,利用反应动力学方法检测arthropin对KLK1的抑制速率。对arthropin重组蛋白的结晶条件进行筛选,选取合适的晶体进行X射线衍射并采集数据。利用AlphaFlod Colab预测arthropin亚稳态结构模型。结果·SDS-PAGE分析发现,arthropin融合蛋白在大肠埃希菌BL21(DE3)中表达;纯化后,获得了高纯度的与理论相对分子质量(45 800)相近的arthropin重组蛋白。将arthropin重组蛋白与14种丝氨酸蛋白酶共孵育后发现,arthropin能与FⅩa、APC、FⅨa、FⅪa、胰蛋白酶(trypsin)、组织蛋白酶G(cathepsin G)、KLK1、KLK7和凝血酶(thrombin)9种蛋白酶形成稳定的共价复合物。Arthropin抑制KLK1的二级反应抑制速率常数为1.7×103 L/(mol·s)。Arthropin重组蛋白可以在25%聚乙二醇单甲醚550(PEG MME 550)、0.1 mol/L吗啉乙磺酸(MES,pH 6.5)、0.01 mol/L ZnCl2条件下形成片状晶体,X射线衍射分辨率为10 ?(1 ?=1×10-10 m)。AlphaFlod Colab预测结果发现,arthropin具有经典的抑制型serpin的结构特点。结论·成功获得高纯度的钝顶节旋藻丝氨酸蛋白酶抑制剂arthropin,其具有较广谱的丝氨酸蛋白酶抑制能力,但抑制速率较低。

本文引用格式

许佳伟 , 周爱武 , 杨愈丰 . 蓝藻丝氨酸蛋白酶抑制剂arthropin的制备及其靶蛋白酶的筛选[J]. 上海交通大学学报(医学版), 2023 , 43(4) : 428 -436 . DOI: 10.3969/j.issn.1674-8115.2023.04.004

Abstract

Objective ·To prepare a high-purity cyanobacterial serine protease inhibitor, screen its target proteases, and detect its inhibitory activity. Methods ·A novel serine protease inhibitor from Arthrospira platensis was identified in the Expanded Human Oral Microbiome Database (eHOMD) by amino acid sequence alignment and named as arthropin. The fusion expression vector pSUMO3-arthropin was constructed and transferred into Escherichia coli (E. coli) BL21(DE3) system for fusion protein expression. The recombinant arthropin was purified by a four-step chromatographic purification approach of nickel affinity chromatography, enzymatic digestion, reverse nickel affinity chromatography, and anion exchange chromatography. In addition, the recombinant arthropin was co-incubated with 14 serine proteases such as activated factor Ⅸ (FⅨa), FⅩa, FⅪa, activated protein C (APC) and kallikrein 1 (KLK1), respectively, and then analyzed by SDS-PAGE. The inhibitory rate of arthropin on KLK1 was assayed with kinetic methods. The crystallization conditions of the recombinant arthropin were screened preliminarily, and the suitable crystals were picked for X-ray diffraction to collect the data. Finally, a sub-stable structure model of arthropin was predicted with AlphaFlod Colab. Results ·SDS-PAGE showed that the fused arthropin was successfully expressed in the E. coli BL21(DE3) system, and following purification, the high-purity recombinant arthropin, the relative molecular mass of which was similar to the theoretical value (45 800), was obtained. The co-incubation analysis of recombinant arthropin with 14 serine proteases revealed that arthropin was able to form stable covalent complexes with 9 proteases, including FⅩa, APC, FⅨa, FⅪa, trypsin, cathepsin G, KLK1, KLK7 and thrombin. Arthropin inhibited KLK1 with a second-order association rate constant of 1.7×103 L/(mol·s). Moreover, the recombinant arthropin crystalised under the condition of 25% PEG MME 550, 0.1 mol/L MES (pH 6.5) and 0.01 mol/L ZnCl2 , and the crystals preliminarily diffracted to a resolution of 10 ? (1 ?=1×10-10 m). The analysis of the structure predicted by AlphaFlod Colab revealed that arthropin had the classical structural features of the inhibitory serpin. Conclusion ·Arthropin, a serpin from Arthrospira platensis, was successfully obtained with high purity and a broad-spectrum of serine protease inhibition, but at a low inhibitory rate.

参考文献

1 LAW R H, ZHANG Q W, MCGOWAN S, et al. An overview of the serpin superfamily[J]. Genome Biol, 2006, 7(5): 216.
2 HUBER R, CARRELL R W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins[J]. Biochemistry, 1989, 28(23): 8951-8966.
3 GETTINS P G W. Serpin structure, mechanism, and function[J]. Chem Rev, 2002, 102(12): 4751-4804.
4 IRVING J A, STEENBAKKERS P J, LESK A M, et al. Serpins in prokaryotes[J]. Mol Biol Evol, 2002, 19(11): 1881-1890.
5 SPENCE M A, MORTIMER M D, BUCKLE A M, et al. A comprehensive phylogenetic analysis of the serpin superfamily[J]. Mol Biol Evol, 2021, 38(7): 2915-2929.
6 HEIT C, JACKSON B C, MCANDREWS M, et al. Update of the human and mouse serpin gene superfamily[J]. Hum Genomics, 2013, 7(1): 22.
7 HUNTINGTON J A, READ R J, CARRELL R W. Structure of a serpin-protease complex shows inhibition by deformation[J]. Nature, 2000, 407(6806): 923-926.
8 IRVING J A, PIKE R N, DAI W W, et al. Evidence that serpin architecture intrinsically supports papain-like cysteine protease inhibition: engineering α1-antitrypsin to inhibit cathepsin proteases[J]. Biochemistry, 2002, 41(15): 4998-5004.
9 IKEZOE T. Advances in the diagnosis and treatment of disseminated intravascular coagulation in haematological malignancies[J]. Int J Hematol, 2021, 113(1): 34-44.
10 GREENE C M, MARCINIAK S J, TECKMAN J, et al. α1-Antitrypsin deficiency[J]. Nat Rev Dis Primers, 2016, 2: 16051.
11 FRAN?OIS D, VENISSE L, MARCHAL-SOMME J, et al. Increased expression of protease nexin-1 in fibroblasts during idiopathic pulmonary fibrosis regulates thrombin activity and fibronectin expression[J]. Lab Invest, 2014, 94(11): 1237-1246.
12 MAAS C, DE MAAT S. Therapeutic SERPINs: improving on nature[J]. Front Cardiovasc Med, 2021, 8: 648349.
13 KLIEBER M A, UNDERHILL C, HAMMOND G L, et al. Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release[J]. J Biol Chem, 2007, 282(40): 29594-29603.
14 ZHOU A W, WEI Z Q, READ R J, et al. Structural mechanism for the carriage and release of thyroxine in the blood[J]. Proc Natl Acad Sci U S A, 2006, 103(36): 13321-13326.
15 ZHANG M, MAGIT D, SAGER R. Expression of maspin in prostate cells is regulated by a positive Ets element and a negative hormonal responsive element site recognized by androgen receptor[J]. Proc Natl Acad Sci U S A, 1997, 94(11): 5673-5678.
16 HUNT L T, DAYHOFF M O. A surprising new protein superfamily containing ovalbumin, antithrombin-Ⅲ, and α1-proteinase inhibitor[J]. Biochem Biophys Res Commun, 1980, 95(2): 864-871.
17 LOMAS D A, EVANS D L, FINCH J T, et al. The mechanism of Z α1-antitrypsin accumulation in the liver[J]. Nature, 1992, 357(6379): 605-607.
18 TANAKA S, KOGA Y, TAKANO K, et al. Inhibition of chymotrypsin- and subtilisin-like serine proteases with Tk-serpin from hyperthermophilic archaeon Thermococcus kodakaraensis[J]. Biochim Biophys Acta, 2011, 1814(2): 299-307.
19 KSIAZEK M, MIZGALSKA D, ENGHILD J J, et al. Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop[J]. J Biol Chem, 2015, 290(1): 658-670.
20 MKAOUAR H, AKERMI N, MARIAULE V, et al. Siropins, novel serine protease inhibitors from gut microbiota acting on human proteases involved in inflammatory bowel diseases[J]. Microb Cell Fact, 2016, 15(1): 201.
21 NAGY Z A, SZAKáCS D, BOROS E, et al. Ecotin, a microbial inhibitor of serine proteases, blocks multiple complement dependent and independent microbicidal activities of human serum[J]. PLoS Pathog, 2019, 15(12): e1008232.
22 WOLLINA U, VOICU C, GIANFALDONI S, et al. Arthrospira platensis-potential in dermatology and beyond[J]. Open Access Maced J Med Sci, 2018, 6(1): 176-180.
23 CLEMENT G. Production and characteristic constituents of the algae Spirulina platensis and maxima[J]. Ann Nutr Aliment, 1975, 29(6): 477-488.
24 AYEHUNIE S, BELAY A, BABA T W, et al. Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis)[J]. J Acquir Immune Defic Syndr Hum Retrovirol, 1998, 18(1): 7-12.
25 TEAS J, IRHIMEH M R. Dietary algae and HIV/AIDS: proof of concept clinical data[J]. J Appl Phycol, 2012, 24(3): 575-582.
26 ROMAY C H, GONZáLEZ R, LEDóN N, et al. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects[J]. Curr Protein Pept Sci, 2003, 4(3): 207-216.
27 PORTMANN C, BLOM J F, KAISER M, et al. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation[J]. J Nat Prod, 2008, 71(11): 1891-1896.
28 SYARINA P N, KARTHIVASHAN G, ABAS F, et al. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells[J]. EXCLI J, 2015, 14: 385-393.
29 KWAN J C, EKSIOGLU E A, LIU C, et al. Grassystatins A?C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation[J]. J Med Chem, 2009, 52(18): 5732-5747.
30 GRAWISH M E. Effects of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7,12-dimethylbenz[α]anthracene[J]. Oral Oncol, 2008, 44(10): 956-962.
31 MISHIMA T, MURATA J, TOYOSHIMA M, et al. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis[J]. Clin Exp Metastasis, 1998, 16(6): 541-550.
32 BRAUNE S, KRüGER-GENGE A, KAMMERER S, et al. Phycocyanin from Arthrospira platensis as potential anti-cancer drug: review of in vitro and in vivo studies[J]. Life (Basel), 2021, 11(2): 91.
33 LIU Q, HUANG Y H, ZHANG R H, et al. Medical application of Spirulina platensis derived C-phycocyanin[J]. Evid Based Complement Alternat Med, 2016, 2016: 7803846.
34 CATASSI A, CESARIO A, ARZANI D, et al. Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells[J]. Cell Mol Life Sci, 2006, 63(19-20): 2377-2386.
35 MALAKHOV M P, MATTERN M R, MALAKHOVA O A, et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins[J]. J Struct Funct Genomics, 2004, 5(1-2): 75-86.
36 WEI H D, CAI H Y, WU J W, et al. Heparin binds lamprey angiotensinogen and promotes thrombin inhibition through a template mechanism[J]. J Biol Chem, 2016, 291(48): 24900-24911.
37 IRVING J A, CABRITA L D, ROSSJOHN J, et al. The 1.5 ? crystal structure of a prokaryote serpin: controlling conformational change in a heated environment[J]. Structure, 2003, 11(4): 387-397.
38 IVANOV D, EMONET C, FOATA F, et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases[J]. J Biol Chem, 2006, 281(25): 17246-17252.
39 CABRITA L D, IRVING J A, PEARCE M C, et al. Aeropin from the extremophile Pyrobaculum aerophilum bypasses the serpin misfolding trap[J]. J Biol Chem, 2007, 282(37): 26802-26809.
40 DAHLEN J R, JEAN F, THOMAS G, et al. Inhibition of soluble recombinant furin by human proteinase inhibitor 8[J]. J Biol Chem, 1998, 273(4): 1851-1854.
41 SANRATTANA W, MAAS C, DE MAAT S. SERPINs: from trap to treatment[J]. Front Med (Lausanne), 2019, 6: 25.
42 GOULAS T, KSIAZEK M, GARCIA-FERRER I, et al. A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome[J]. J Biol Chem, 2017, 292(26): 10883-10898.
43 ANAS A R, NAKAJIMA A, NARUSE C, et al. Determination of FⅦa- sTF inhibitors in toxic Microcystis cyanobacteria by LC-MS technique[J]. Mar Drugs, 2015, 14(1): 7.
44 WELKER M, BRUNKE M, PREUSSEL K, et al. Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry[J]. Microbiology (Reading), 2004, 150(Pt 6): 1785-1796.
45 AHMED M N, WAHLSTEN M, JOKELA J, et al. Potent inhibitor of human trypsins from the aeruginosin family of natural products[J]. ACS Chem Biol, 2021, 16(11): 2537-2546.
46 LIANG J, LI T, ZHANG Y L, et al. Effect of microcystin-LR on protein phosphatase 2A and its function in human amniotic epithelial cells[J]. J Zhejiang Univ Sci B, 2011, 12(12): 951-960.
47 VON ELERT E, OBERER L, MERKEL P, et al. Cyanopeptolin 954, a chlorine-containing chymotrypsin inhibitor of Microcystis aeruginosa NIVA Cya 43[J]. J Nat Prod, 2005, 68(9): 1324-1327.
文章导航

/