论著 · 基础研究

孟鲁司特对哮喘中白三烯B4代谢的影响

  • 胡煜 ,
  • 谢亮 ,
  • 邹丹 ,
  • 伏洪玲 ,
  • 娄丽丽 ,
  • 谢柯祺 ,
  • 刘瀚旻
展开
  • 1.四川大学华西第二医院小儿呼吸免疫科,成都 610041
    2.四川大学华西第二医院肺发育与相关疾病联合实验室,成都 610041
    3.电子科技大学医学院附属绵阳医院·绵阳市中心医院儿科,绵阳 621000
    4.四川大学华西第二医院出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
    5.四川大学国家卫生健康委员会时间生物学重点实验室,成都 610041
胡 煜(1982—),男,副主任医师,博士;电子信箱:976700544@qq.com
刘瀚旻,电子信箱:liuhm@scu.edu.cn

收稿日期: 2023-03-31

  录用日期: 2023-01-03

  网络出版日期: 2023-07-11

基金资助

国家自然科学基金(U21A20333);四川省中央引导地方科技发展专项项目(2021ZYD0105);中央高校基本科研业务费专项资金(SCU2022D022);四川省卫健委普及应用项目(20PJ254)

Effect of montelukast on leukotriene B4 metabolism in asthma

  • Yu HU ,
  • Liang XIE ,
  • Dan ZOU ,
  • Hongling FU ,
  • Lili LOU ,
  • Keqi XIE ,
  • Hanmin LIU
Expand
  • 1.Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
    2.The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University; West China Institute of Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
    3.Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
    4.Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
    5.NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, 610041, China
LIU Hanmin, E-mail: liuhm@scu.edu.cn.

Received date: 2023-03-31

  Accepted date: 2023-01-03

  Online published: 2023-07-11

Supported by

National Natural Science Foundation of China-Joint Fund for Regional Innovation and Development(U21A20333);Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(2021ZYD0105);Fundamental Research Funds for the Central Universities(SCU2022D022);Popularization and application project of Sichuan Health Committee(20PJ254)

摘要

目的·观察孟鲁司特在哮喘治疗中对白三烯B4(leukotriene B4,LTB4)代谢途径关键分子表达的影响,探讨哮喘的潜在干预靶点。方法·卵清蛋白(ovalbumin,OVA)+Al(OH)3致敏激发小鼠,建立以过敏性气道疾病(allergic airway disease,AAD)为特点的小鼠急性、亚急性和慢性哮喘模型并予孟鲁司特灌胃干预,然后再予OVA激发慢性哮喘模型。无约束全身体积描记仪测定小鼠肺功能,探究气道高反应性(airway hyperresponsiveness,AHR)的变化规律。苏木精-伊红(hematoxylin-eosin,HE)染色观察肺组织嗜酸性粒细胞(eosinophil,EOS)浸润及杯状细胞(goblet cell,GCL)增生情况,观察气道过敏性炎症的病理学特点。ELISA和液相芯片多因子检测试剂盒检测支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)和血清的免疫球蛋白E(immunoglobulin E,IgE)、干扰素γ(interferon γ,IFN-γ)和白细胞介素(interleukin,IL)表达水平,观察2型辅助性T细胞(helper T cell type 2,Th2)炎症情况。RT-qPCR、Western blotting及免疫组织化学检测小鼠LTB4合成限速酶5-脂氧合酶激活蛋白(5-lipoxygenase activating protein,ALOX5AP)和白三烯A4水解酶(leukotriene A4 hydrolase,LTA4H)及LTB4受体1(leukotriene B4 receptor 1,BLT1)基因及蛋白表达,探究LTB4的代谢与哮喘的关系。结果·OVA+Al(OH)3可建立以AAD为特征的小鼠哮喘模型,表现为以增强呼气间歇(enhanced pause,Penh)值升高为肺功能特点的AHR,以气道EOS浸润和GCL增生为病理学特点的嗜酸性炎症和黏液高分泌状态,及以BALF和血清中IgE、IL-4和IL-13升高且IFN-γ、IL-2和IL-12降低为免疫学特点的Th2型炎症反应;孟鲁司特可有效缓解AAD。ALOX5APLTA4HBLT1基因及蛋白在哮喘中表达增强,孟鲁司特始终抑制ALOX5AP表达,但可促进LTA4HBLT1在慢性期的表达。OVA再次激发后,孟鲁司特可使LTA4HBLT1表达增强。结论·孟鲁司特具有缓解哮喘小鼠过敏性炎症的效应,但可刺激LTB4的生成和堆积并以慢性期显著;再次予OVA激发孟鲁司特持续干预的哮喘小鼠可使LTB4与BLT1的表达增强;孟鲁司特可能存在激活LTB4及其受体BLT1进而加重哮喘发作的风险,LTB4代谢限速酶LTA4H及受体BLT1可能是哮喘治疗的潜在靶点。

本文引用格式

胡煜 , 谢亮 , 邹丹 , 伏洪玲 , 娄丽丽 , 谢柯祺 , 刘瀚旻 . 孟鲁司特对哮喘中白三烯B4代谢的影响[J]. 上海交通大学学报(医学版), 2023 , 43(5) : 580 -591 . DOI: 10.3969/j.issn.1674-8115.2023.05.008

Abstract

Objective ·To observe the effect of montelukast on the expressions of key genes in LTB4 (leukotriene B4) metabolic pathway in treating asthma and investigate the candidate intervene targets of asthma. Methods ·The acute, subacute, and chronic asthmatic mouse models characterizing by allergic airway disease (AAD) were set up by ovalbumin (OVA) and Al(OH)3 sensitization and challenge and intervened by intragastric administration of montelukast and finally challenged by OVA for chronic asthma model. The pulmonary functions of mice were tested by unconstrained whole body plethysmograph, to quest the change patterns of airway hyperresponsiveness (AHR). The eosinophil (EOS) infiltration and goblet cell (GCL) hyperplasia in mouse lungs were detected by hematoxylin-eosin (HE) staining, to quest the pathologic features of airway allergic inflammation. The levels of immunoglobulin E (IgE), interferon γ (IFN-γ), and interleukin (IL) in bronchoalveolar lavage fluid (BALF) and serum were detected by ELISA and Milliplex kits, to quest the helper T cell type 2 (Th2) inflammation status. The transcription and protein levels of 5-lipoxygenase activating protein (ALOX5AP), leukotriene A4 hydrolase (LTA4H), and leukotriene B4 receptor 1 (BLT1) genes, which encoded the rate-limiting enzymes in LTB4 synthesis pathway, were detected by RT-qPCR, Western blotting and immunohistochemistry (IHC). Results ·The asthmatic mouse model could be set up by OVA and Al (OH)3 and was presented as AHR characterized by increasing enhanced pause (Penh) value, eosinophilic inflammation and high mucous secretion pathologically characterized by airway EOS infiltration and GCL hyperplasia, Th2 inflammation immunologically characterized by the increasing levels of IgE, IL-4, and IL-13 as well as decreasing levels of IFN-γ, IL-2, and IL-12 in BALF and serum. Montelukast could alleviate AAD effectively. The transcription and protein levels of ALOX5AP, LTA4H, and BLT1 genes increased in asthma. Montelukast can inhibit the expression of ALOX5AP gene and promote the expressions of LTB4 and BLT1 genes in asthmatic chronic phase. When challenged by OVA once again, montelukast can induce the significantly high expressions of LTB4 and BLT1 genes. Conclusion ·Montelukast has the effect of relieving allergic inflammation in asthma mice, but it can stimulate the production and accumulation of LTB4 and is significant in chronic phase. When challenged by OVA a second time, LTB4 could be promoted to combine with BLT1 and attend in the pathogenesis of asthma. The results suggested that there was a potential risk of activation of LTB4 by montelukast. The rate-limiting enzyme LTA4H and its receptor BLT1 metabolism may be potential targets for asthma treatment.

参考文献

1 JOHNSON C C, CHANDRAN A, HAVSTAD S, et al. US childhood asthma incidence rate patterns from the ECHO consortium to identify high-risk groups for primary prevention[J]. JAMA Pediatr, 2021, 175(9): 919-927.
2 MESHRAM D, BHARDWAJ K, RATHOD C, et al. The role of leukotrienes inhibitors in the management of chronic inflammatory diseases[J]. Recent Pat Inflamm Allergy Drug Discov, 2020, 14(1): 15-31.
3 YAMAMOTO T, MIYATA J, ARITA M, et al. Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma[J]. Respir Investig, 2019, 57(6): 534-543.
4 NIALS A T, UDDIN S. Mouse models of allergic asthma: acute and chronic allergen challenge[J]. Dis Model Mech, 2008, 1(4/5): 213-220.
5 LOCKE N R, ROYCE S G, WAINEWRIGHT J S, et al. Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease[J]. Am J Respir Cell Mol Biol, 2007, 36(5): 625-632.
6 PADRID P, SNOOK S, FINUCANE T, et al. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats[J]. Am J Respir Crit Care Med, 1995, 151(1): 184-193.
7 CHO K S, PARK M K, KANG S A, et al. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma[J]. Mediators Inflamm, 2014, 2014: 436476.
8 MIYATA J, FUKUNAGA K, KAWASHIMA Y, et al. Cysteinyl leukotriene metabolism of human eosinophils in allergic disease[J]. Allergol Int, 2020, 69(1): 28-34.
9 BRUNO F, SPAZIANO G, LIPARULO A, et al. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma[J]. Eur J Med Chem, 2018, 153: 65-72.
10 LECHNER A, HENKEL F D R, HARTUNG F, et al. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma[J]. J Allergy Clin Immunol, 2022, 149(6): 2078-2090.
11 RO M, LEE A J, KIM J H. 5-/ 12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development[J]. Allergy, 2018, 73(2): 350-360.
12 DOHERTY T A, KHORRAM N, LUND S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production[J]. J Allergy Clin Immunol, 2013, 132(1): 205-213.
13 THIVIERGE M, STANKOVá J, ROLA-PLESZCZYNSKI M. IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages[J]. J Immunol, 2001, 167(5): 2855-2860.
14 ZHOU X J, QIN Z, LU J, et al. Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: a systematic review and meta-analysis[J]. Chin Med J, 2021, 134(24): 2954-2961.
15 DEBELLEIX S, SIAO-HIM FA V, BEGUERET H, et al. Montelukast reverses airway remodeling in actively sensitized young mice[J]. Pediatr Pulmonol, 2018, 53(6): 701-709.
16 WANG W L, LUO X M, ZHANG Q, et al. Bifidobacterium infantis relieves allergic asthma in mice by regulating Th1/Th2[J]. Med Sci Monit, 2020, 26: e920583.
17 SUN W, LIU H Y. Montelukast and budesonide for childhood cough variant asthma[J]. J Coll Physicians Surg Pak, 2019, 29(4): 345-348.
18 ELIEH ALI KOMI D, BJERMER L. Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights[J]. Clin Rev Allergy Immunol, 2019, 56(2): 234-247.
19 BRIGHTLING C E, BRUSSELLE G, ALTMAN P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma[J]. Allergy, 2020, 75(4): 761-768.
20 SCHEXNAYDRE E E, GERSTMEIER J, GARSCHA U, et al. A 5?lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 543-551.
21 MU?OZ N M, MELITON A Y, MELITON L N, et al. Secretory group V phospholipase A2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(6): L879-L887.
22 LESLIE C C. Cytosolic phospholipase A?: physiological function and role in disease[J]. J Lipid Res, 2015, 56(8): 1386-1402.
23 SOKOLOWSKA M, STEFANSKA J, WODZ-NASKIEWICZ K, et al. Cytosolic phospholipase A2 group IVA is overexpressed in patients with persistent asthma and regulated by the promoter microsatellites[J]. J Allergy Clin Immunol, 2010, 125(6): 1393-1395.
24 GRANATA F, STAIANO R I, LOFFREDO S, et al. The role of mast cell-derived secreted phospholipases A2 in respiratory allergy[J]. Biochimie, 2010, 92(6): 588-593.
25 TOUQUI L. Antisense inhibition of phospholipase A2: a new approach for already tested therapeutic targets for the treatment of sepsis[J]. Crit Care Med, 2012, 40(7): 2250-2251.
26 ZAMAN K, HANIGAN M H, SMITH A, et al. Endogenous S-nitrosoglutathione modifies 5-lipoxygenase expression in airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2006, 34(4): 387-393.
27 KOGA T, SASAKI F, SAEKI K, et al. Expression of leukotriene B4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation[J]. Cell Mol Immunol, 2021, 18(6): 1437-1449.
28 PAL K, FENG X, STEINKE J W, et al. Leukotriene A4 hydrolase activation and leukotriene B4 production by eosinophils in severe asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(4): 413-419.
29 HE R, CHEN Y, CAI Q. The role of the LTB4-BLT1 axis in health and disease[J]. Pharmacol Res, 2020, 158: 104857.
30 UCHIDA Y, SOMA T, NAKAGOME K, et al. Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma[J]. Ann Allergy Asthma Immunol, 2019, 123(1): 81-88.e1.
31 PREEZ S D, RAIDAL S L, DORAN G S, et al. Exhaled breath condensate hydrogen peroxide, pH and leukotriene B4 are associated with lower airway inflammation and airway cytology in the horse[J]. Equine Vet J, 2019, 51(1): 24-32.
32 STAPLETON R D, SURATT B T, NEFF M J, et al. Bronchoalveolar fluid and plasma inflammatory biomarkers in contemporary ARDS patients[J]. Biomarkers, 2019, 24(4): 352-359.
33 BERRY K A, BORGEAT P, GOSSELIN J, et al. Urinary metabolites of leukotriene B4 in the human subject[J]. J Biol Chem, 2003, 278(27): 24449-24460.
34 LEE J J, DIMINA D, MACIAS M P, et al. Defining a link with asthma in mice congenitally deficient in eosinophils[J]. Science, 2004, 305(5691): 1773-1776.
35 ASANUMA F, KUWABARA K, ARIMURA A, et al. Effects of leukotriene B4 receptor antagonist, LY293111Na, on antigen-induced bronchial hyperresponsiveness and leukocyte infiltration in sensitized guinea pigs[J]. Inflamm Res, 2001, 50(3): 136-141.
36 KUBO M. Mast cells and basophils in allergic inflammation[J]. Curr Opin Immunol, 2018, 54: 74-79.
37 LEE Y J, KIM C K. Montelukast use over the past 20 years: monitoring of its effects and safety issues[J]. Clin Exp Pediatr, 2020, 63(10): 376-381.
文章导航

/