综述

线粒体功能障碍与骨质疏松症相关性研究进展

  • 金芳全 ,
  • 樊成虎 ,
  • 唐晓栋 ,
  • 陈彦同 ,
  • 齐兵献
展开
  • 1.甘肃中医药大学中医临床学院,兰州 730030
    2.甘肃省中医院脊柱中心,兰州 730050
金芳全(1994—),男,硕士生,电子信箱:3214555282@qq.com
唐晓栋,电子信箱:1927981689@qq.com

收稿日期: 2023-02-08

  录用日期: 2023-06-21

  网络出版日期: 2023-06-28

基金资助

国家自然科学基金(81760877);甘肃省科技厅重点研发计划社会发展类项目(21ZD4FA009);甘肃省中医药重点课题(GZKZ-2021-3);甘肃省中医药科研课题(GZKP-2021-12)

Research progress in the relationship between mitochondrial dysfunction and osteoporosis

  • Fangquan JIN ,
  • Chenghu FAN ,
  • Xiaodong TANG ,
  • Yantong CHEN ,
  • Bingxian QI
Expand
  • 1.Clinical College of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730030
    2.Gansu Provincial Hospital of Traditional Chinese Medicine Spine Center, Lanzhou 730050
TANG Xiaodong, Email:1927981689@qq.com.

Received date: 2023-02-08

  Accepted date: 2023-06-21

  Online published: 2023-06-28

Supported by

National Natural Science Foundation of China(81760877);Social Development Project of Key Research and Development Program of Gansu Provincial Department of Science and Technology(21ZD4FA009);Key Project of Traditional Chinese Medicine of Gansu Province(GZKZ-2021-3);Scientific Research Project of Traditional Chinese Medicine of Gansu Province(GZKP-2021-12)

摘要

骨质疏松症(osteoporosis,OP)是一种以骨量减少、骨脆性增加为特征的慢性老年性骨病,诱发因素较多且发病机制复杂。探究OP机制,提高临床疗效一直是生命科学领域的研究热点。近年来研究发现线粒体在OP发病机制中具有重要意义。线粒体能量代谢、线粒体氧化应激、线粒体自噬、线粒体介导的凋亡、线粒体动力学等功能异常均可通过不同信号通路、细胞因子及蛋白质表达干预骨髓间充质干细胞分化命运,调控成骨细胞活性及增殖分化,启动破骨细胞凋亡程序。因此以线粒体为靶点,调节线粒体能量代谢、氧化应激、自噬、动力学等功能,诱导骨髓间充质干细胞成骨分化,促进成骨细胞分化与矿化,诱导破骨细胞凋亡是防治OP的潜在策略。该文查阅国内外相关文献,就线粒体功能障碍在OP中的作用机制作一综述,以期为进一步研究奠定基础。

本文引用格式

金芳全 , 樊成虎 , 唐晓栋 , 陈彦同 , 齐兵献 . 线粒体功能障碍与骨质疏松症相关性研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(6) : 761 -767 . DOI: 10.3969/j.issn.1674-8115.2023.06.013

Abstract

Osteoporosis (OP) is a chronic senile bone disease characterized by decreased bone mass and increased bone fragility. There are many inducing factors and the pathogenesis is complex. To explore the mechanism of OP and improve clinical efficacy has always been a hot topic in life science. In recent years, it has been found that mitochondria play an important role in the pathogenesis of OP. Functional abnormalities such as mitochondrial energy metabolism, mitochondrial oxidative stress, mitochondrial autophagy, mitochondrial-mediated apoptosis and mitochondrial dynamics can interfere with the differentiation of bone marrow mesenchymal stem cells through different signal pathways, cytokines and protein expression to regulate osteoblast activity, proliferation and differentiation, and start the process of osteoclast apoptosis. Therefore, taking mitochondria as the target, regulating the functions of mitochondrial energy metabolism, oxidative stress, autophagy and kinetics, inducing osteogenic differentiation of bone marrow mesenchymal stem cells, promoting osteoblast differentiation and mineralization, and inducing osteoclast apoptosis are potential strategies for the prevention and treatment of OP. In this article, the mechanism of mitochondrial dysfunction in OP was reviewed by referring to relevant literature at home and abroad, in order to lay a foundation for further research.

参考文献

1 JIANG Y H, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Prolif, 2021, 54(1): e12956.
2 吴惠一, 刘颖, 兰亚佳, 等. 中国绝经女性骨质疏松症患病率的Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 882-890.
2 WU H Y, LIU Y, LAN Y J, et al. Meta-analysis of the prevalence of osteoporosis in Chinese postmenopausal women[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8):882-890.
3 CUI L J, JACKSON M, WESSLER Z, et al. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among women in China: a simulation projection model from 2020 to 2040[J]. Arch Osteoporos, 2021, 16(1): 118.
4 LORENTZON M, JOHANSSON H, HARVEY N C, et al. Osteoporosis and fractures in women: the burden of disease[J]. Climacteric, 2022, 25(1): 4-10.
5 YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.
6 LEE W C, GUNTUR A R, LONG F X, et al. Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266.
7 DONAT A, KNAPSTEIN P R, JIANG S, et al. Glucose metabolism in osteoblasts in healthy and pathophysiological conditions[J]. Int J Mol Sci, 2021, 22(8): 4120.
8 LI T C, YAN Z Q, HE S S, et al. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1[J]. Oral Dis, 2021, 27(2): 290-300.
9 ANGIREDDY R, KAZMI H R, SRINIVASAN S, et al. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages[J]. FASEB J, 2019, 33(8): 9167-9181.
10 ZHANG Y, ROHATGI N, VEIS D J, et al. PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation[J]. J Bone Miner Res, 2018, 33(6): 1114-1125.
11 GUO L, CHEN K Z, YUAN J, et al. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC[J]. J Cell Physiol, 2018, 234(1): 581-594.
12 GUO Y S, CHI X P, WANG Y F, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther, 2020, 11(1): 245.
13 YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.
14 FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.
15 JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]. Arch Biochem Biophys, 2021, 702: 108698.
16 HARGREAVES M, SPRIET L L. Skeletal muscle energy metabolism during exercise[J]. Nat Metab, 2020, 2(9): 817-828.
17 JIN Y, SHEN Y, SU X, et al. The small GTPases Rab27b regulates mitochondrial fatty acid oxidative metabolism of cardiac mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 209.
18 PAL S, SINGH M, PORWAL K, et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function[J]. Eur J Pharmacol, 2021, 913: 174634.
19 LEE S Y, LONG F X. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12): 5573-5586.
20 KNOWLES H J. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function[J]. Sci Rep, 2020, 10(1): 21072.
21 SHARES B H, BUSCH M, WHITE N, et al. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation[J]. J Biol Chem, 2018, 293(41): 16019-16027.
22 KUSHWAHA P, ALEKOS N S, KIM S P, et al. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice[J]. Front Physiol, 2022, 13: 997358.
23 LI X M, CHEN Y, MAO Y X, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway[J]. Front Bioeng Biotechnol, 2020, 8: 625.
24 MA C, SUN Y N, PI C C, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2[J]. Front Cell Dev Biol, 2020, 8: 599376.
25 CAO X C, LUO D Q, LI T, et al. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts[J]. J Bone Miner Metab, 2020, 38(1): 27-37.
26 LIU H D, REN M X, LI Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1[J]. Free Radic Res, 2022, 56(1): 63-76.
27 KIM H N, PONTE F, NOOKAEW I, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors[J]. Sci Rep, 2020, 10(1): 11933.
28 ZENG Z P, ZHOU X C, WANG Y, et al. Mitophagy-a new target of bone disease[J]. Biomolecules, 2022, 12(10): 1420.
29 FENG X R, YIN W, WANG J L, et al. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2021, 246(1): 97-105.
30 FAN P, YU X Y, XIE X H, et al. Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells[J]. Life Sci, 2019, 229: 36-45.
31 GUO Y Y, JIA X, CUI Y Z, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41: 101915.
32 WANG X D, MA H D, SUN J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis[J]. Biol Trace Elem Res, 2022, 200(1): 298-307.
33 LAHA D, SARKAR J, MAITY J, et al. Polyphenolic compounds inhibit osteoclast differentiation while reducing autophagy through limiting ROS and the mitochondrial membrane potential[J]. Biomolecules, 2022, 12(9): 1220.
34 AOKI S, SHIMIZU K, ITO K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation[J]. Biochem Biophys Res Commun, 2020, 527(4): 874-880.
35 BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
36 RAJABZADEH N, FATHI E, FARAHZADI R. Stem cell-based regenerative medicine[J]. Stem Cell Investig, 2019, 6: 19.
37 QIU T, HE Y Y, ZHANG X, et al. Novel role of ER stress and mitochondria stress in serum-deprivation induced apoptosis of rat mesenchymal stem cells[J]. Curr Med Sci, 2018, 38(2): 229-235.
38 CHEN Y M, XIONG S B, ZHAO F H, et al. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells[J]. J Biomed Mater Res A, 2019, 107(6): 1253-1263.
39 YANG K D, PEI L, ZHOU S M, et al. Metformin attenuates H2O2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway[J]. Exp Ther Med, 2021, 22(5): 1316.
40 ZHENG D L, CUI C L, SHAO C, et al. Coenzyme Q10 inhibits RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells[J]. J Biochem Mol Toxicol, 2021, 35(7): e22778.
41 REN L, CHEN X D, CHEN X B, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 580070.
42 WAN M C, TANG X Y, LI J, et al. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes[J]. Acta Biomater, 2021, 136: 137-146.
43 FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.
44 ZHONG X Y, CUI P, CAI Y P, et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells[J]. Cell Metab, 2019, 29(4): 979-992.e4.
45 PAHWA H, KHAN M T, SHARAN K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis[J]. Mol Cell Biochem, 2020, 469(1/2): 109-118.
46 JEONG S, SEONG J H, KANG J H, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett, 2021, 595(1): 58-67.
47 NISHIKAWA K, TAKEGAMI H, SESAKI H. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation[J]. MicroPubl Biol, 2022. DOI: 10.17912/micropub.biology.000650.
文章导航

/