创新团队成果专栏

癌睾丸基因的基因表达程序分析

  • 侯宗良 ,
  • 杨琴 ,
  • 李少白 ,
  • 雷鸣
展开
  • 上海交通大学医学院附属第九人民医院上海精准医学研究院,上海 200125
侯宗良(1998—),男,硕士生;电子信箱:EnderZ@sjtu.edu.cn
雷 鸣,电子信箱:leim@shsmu.edu.cn

收稿日期: 2023-03-29

  录用日期: 2023-05-18

  网络出版日期: 2023-08-28

基金资助

国家重点研发计划(2018YFA0107004)

Gene expression program analysis of cancer-testis genes

  • Zongliang HOU ,
  • Qin YANG ,
  • Shaobai LI ,
  • Ming LEI
Expand
  • Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
LEI Ming, E-mail: leim@shsmu.edu.cn.

Received date: 2023-03-29

  Accepted date: 2023-05-18

  Online published: 2023-08-28

Supported by

National Key Research and Development Program of China(2018YFA0107004)

摘要

目的·基于睾丸单细胞转录组数据,鉴定精子发生过程中癌睾丸基因(cancer-testis gene,CTG)的基因表达程序(gene expression program,GEP),并探究其与肿瘤患者预后的关系。方法·从GTEx数据库和TCGA数据库获取正常组织和肿瘤组织的表达谱,筛选CTG。基于睾丸单细胞转录组,使用leiden聚类算法鉴定出CTG在精子发生过程中的GEP。使用DecoupleR评估GEP的活跃程度,以确定每个GEP活跃的细胞类型和精子发生时期。利用DecoupleR评估GEP在肿瘤组织中的活跃程度,并分析GEP与肿瘤患者生存的相关性。结果·基于GTEx和TCGA数据库中正常组织和肿瘤组织的基因表达谱,筛选到917个CTG。利用CTG在睾丸单细胞转录组中的表达情况,通过聚类算法鉴定出7个GEP。GEP活性分析结果表明,GEP5活跃于精子发生前期,包括精原干细胞、分化中的精原细胞和早期初级精母细胞等细胞类型。统计其在染色体上的分布发现,GEP5包含的基因主要分布于X染色体上。生存分析结果表明GEP5在多种肿瘤类型中的活跃程度与患者的生存情况呈负相关。结论·在精子发生过程中,GEP5活跃于精子发生过程的前期,其包含的基因主要分布于X染色体上。在多种肿瘤类型中,GEP5的活跃程度与患者的预后密切相关。

本文引用格式

侯宗良 , 杨琴 , 李少白 , 雷鸣 . 癌睾丸基因的基因表达程序分析[J]. 上海交通大学学报(医学版), 2023 , 43(8) : 945 -954 . DOI: 10.3969/j.issn.1674-8115.2023.08.001

Abstract

Objective ·To identify the gene expression program (GEP) of cancer-testis genes (CTGs) during spermatogenesis based on single-cell transcriptome data from the testis and investigate their association with the prognosis of cancer patients. Methods ·Expression profiles of normal and tumor tissues were obtained from the GTEx and TCGA databases to screen CTGs. The GEP of CTGs during spermatogenesis was identified by applying the leiden clustering algorithm to testicular single-cell transcriptome data. DecoupleR was used to evaluate the activity levels of GEP and determine the cell types and stages of spermatogenesis where each GEP was active. Subsequently, DecoupleR was used to evaluate the activity levels of GEP in tumor tissues and analyze the correlation between GEP and cancer patient survival. Results ·Based on the expression profiles of normal and tumor tissues from the GTEx and TCGA databases, 917 CTGs were identified. By using the expression patterns of CTGs in the testicular single-cell transcriptome data, seven GEPs were identified through the clustering algorithm. Activity level analysis revealed that GEP5 was active in the early stages of spermatogenesis, including spermatogonia stem cells, differentiating spermatogonia, and early primary spermatocytes. The distribution of GEP5-associated genes was predominantly found on the X chromosome. Additionally, survival analysis demonstrated a statistically significant negative correlation between GEP5 activity levels and patient survival in various tumors. Conclusion ·During spermatogenesis, GEP5 is active in early stages, and its associated genes are primarily located on the X chromosome. In multiple tumor types, the activity level of GEP5 is closely related to patient prognosis.

参考文献

1 SCANLAN M J, GORDON C M, WILLIAMSON B, et al. Identification of cancer/testis genes by database mining and mRNA expression analysis[J]. Int J Cancer, 2002, 98(4): 485-492.
2 HUBBARD J M, AHN D H, JONES J C, et al. Trial in progress: a phase Ⅱ, multicenter, open-label study of PolyPEPI1018 in combination with atezolizumab in participants with relapsed or refractory microsatellite-stable metastatic colorectal (MSS mCRC) cancer (Oberto-301)[J]. J Clin Oncol, 2023, 41(4 suppl): TPS283-TPS283.
3 ALMEIDA L G, SAKABE N J, DEOLIVEIRA A R, et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens[J]. Nucleic Acids Res., 2009, 37(suppl_1): D816-D819.
4 WANG C, GU Y Y, ZHANG K, et al. Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types[J]. Nat Commun, 2016, 7: 10499.
5 GORDEEVA O. Cancer-testis antigens: unique cancer stem cell biomarkers and targets for cancer therapy[J]. Semin Cancer Biol, 2018, 53: 75-89.
6 MENG X Y, SUN X Q, LIU Z L, et al. A novel era of cancer/testis antigen in cancer immunotherapy[J]. Int Immunopharmacol, 2021, 98: 107889.
7 SIMPSON A J G, CABALLERO O L, JUNGBLUTH A, et al. Cancer/testis antigens, gametogenesis and cancer[J]. Nat Rev Cancer, 2005, 5(8): 615-625.
8 MOUNIR M, LUCCHETTA M, SILVA T C, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx[J]. PLoS Comput Biol, 2019, 15(3): e1006701.
9 GUO J T, GROW E J, MLCOCHOVA H, et al. The adult human testis transcriptional cell atlas[J]. Cell Res, 2018, 28(12): 1141-1157.
10 HERMANN B P, CHENG K R, SINGH A, et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids[J]. Cell Rep, 2018, 25(6): 1650-1667.e8.
11 SOHNI A, TAN K, SONG H W, et al. The neonatal and adult human testis defined at the single-cell level[J]. Cell Rep, 2019, 26(6): 1501-1517.e4.
12 ALEXANDER WOLF F, ANGERER P, THEIS F J. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biol, 2018, 19(1): 15.
13 LOPEZ R, REGIER J, COLE M B, et al. Deep generative modeling for single-cell transcriptomics[J]. Nat Methods, 2018, 15(12): 1053-1058.
14 BERNSTEIN N J, FONG N L, LAM I, et al. Solo: doublet identification in single-cell RNA-seq via semi-supervised deep learning[J]. Cell Syst, 2020, 11(1): 95-101.e5.
15 TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden: guaranteeing well-connected communities[J]. Sci Rep, 2019, 9(1): 5233.
16 WANG M, LIU X X, CHANG G, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis[J]. Cell Stem Cell, 2018, 23(4): 599-614.e4.
17 FAYOMI A P, ORWIG K E. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men[J]. Stem Cell Res, 2018, 29: 207-214.
18 BADIA-I-MOMPEL P, VéLEZ SANTIAGO J, BRAUNGER J, et al. decoupleR: ensemble of computational methods to infer biological activities from omics data[J]. Bioinformatics Adv, 2022, 2(1): vbac016.
19 LIU W S. Mammalian sex chromosome structure, gene content, and function in male fertility[J]. Annu Rev Anim Biosci, 2019, 7(1): 103-124.
文章导航

/