收稿日期: 2023-04-06
录用日期: 2023-07-17
网络出版日期: 2023-11-28
基金资助
国家自然科学基金(81271073)
Advances in stem cell therapy for sensory nerve injury
Received date: 2023-04-06
Accepted date: 2023-07-17
Online published: 2023-11-28
Supported by
National Natural Science Foundation of China(81271073)
感觉神经属于周围神经系统的传入神经部分。它们的作用是接受机体内外刺激,传入中枢,形成感觉或反射。外伤、肿瘤侵犯、手术损伤等原因,均可导致感觉神经受损。感觉神经损伤可能会使患者的某些感觉器官功能减退或丧失,如视神经、听神经等重要感觉神经在受损后会给患者生活质量带来严重影响。目前临床上修复感觉神经的方法主要是自体神经移植,但其应用受到各种因素限制,神经功能的恢复效果也常常有限。干细胞具有多向分化潜能,可以分化成施万细胞,继而分泌神经营养因子促进轴突生长和髓鞘再生,施万细胞定向增殖形成宾格尔带,引导神经再生。干细胞也可以分化为神经元,构筑神经缺损的修复材料,是神经修复的理想选择。目前,以干细胞为基础,结合若干关键性的生物技术,例如利用生物聚合或人工合成的表面微图案化的神经导管实现神经缺损的桥接、利用微球实现细胞外基质蛋白和神经营养因子控制性释放等,形成的组织工程学技术正被广泛研究,并取得了一定的成果。该文就干细胞在几种主要的感觉神经如视神经、嗅神经、蜗神经及坐骨神经的感觉神经纤维等损伤修复中的研究进展进行综述,期望为干细胞的神经修复提供新的视角,拓宽干细胞在神经修复中的临床前研究,为后续的临床应用提供参考。
陈惠东 , 张云龙 , 张志坚 , 华清泉 . 干细胞修复感觉神经损伤的研究进展[J]. 上海交通大学学报(医学版), 2023 , 43(11) : 1450 -1456 . DOI: 10.3969/j.issn.1674-8115.2023.11.014
Sensory nerves belong to the afferent nerve part of the peripheral nervous system. Their role is to accept the stimuli inside and outside the body and transmit them to the center nerve system to form sensations or reflexes. Sensory nerve damage can be caused by trauma, tumor invasion, surgical injury, etc. Sensory nerve injury may cause decline or loss of some sensory organs function in patients. Damage of important sensory nerves such as optic nerves and auditory nerves can bring profound troubles to patients' lives. So far, the main clinical method to repair sensory nerves is autologous nerve transplantation. However, its application is limited by various factors, and the recovery effect of nerve function is often limited. Stem cells have the potential of multi-directional differentiation, which can differentiate into Schwann cells, and then secrete neurotrophic factors to promote axonal growth and myelin regeneration. Schwann cells directionally proliferate and form Büngner zones which guide nerve regeneration. Stem cells can also differentiate into neurons and construct nerve defect repair materials, which is an ideal choice for nerve repair. At present, the tissue engineering technology based on stem cells, combined with several key biotechnology, such as the use of biopolymerized or artificial surface micro-patterning nerve conduit to bridge nerve defects, and the use of microspheres to achieve the controlled release of extracellular matrix proteins and neurotrophic factors, is being widely studied and has achieved certain research results. This article reviews the research progress of stem cells in the repair of several major sensory nerves, such as optic nerves, olfactory nerves, cochlear nerves and sensory nerve fibers of sciatic nerve, expecting to provide a new perspective for neural repair of stem cells, broaden the preclinical research in nerve repair, and provide reference for follow-up clinical application.
Key words: sensory nerve; peripheral nerve; stem cell; nerve repair
1 | GEISSLER J, STEVANOVIC M. Management of large peripheral nerve defects with autografting[J]. Injury, 2019, 50(Suppl 5): S64-S67. |
2 | JIN J. Stem cell treatments[J]. JAMA, 2017, 317(3): 330. |
3 | ZHANG Q Z, NGUYEN P D, SHI S H, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats[J]. Mol Neurobiol, 2018, 55(8): 6965-6983. |
4 | REMINGTON L A. Visual system[M]//Clinical anatomy and physiology of the visual system. Amsterdam: Elsevier, 2012: 1-9. |
5 | ZHANG K Y, TUFFY C, MERTZ J L, et al. Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells[J]. Stem Cell Reports, 2021, 16(1): 149-167. |
6 | DA SILVA-JUNIOR A J, MESENTIER-LOURO L A, NASCIMENTO-DOS-SANTOS G, et al. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats[J]. Stem Cell Res Ther, 2021, 12(1): 69. |
7 | MEAD B, LOGAN A, BERRY M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556. |
8 | CHUNG S, RHO S, KIM G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury[J]. Int J Mol Med, 2016, 37(5): 1170-1180. |
9 | MEAD B, TOMAREV S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285. |
10 | LIU F Y, LI G W, SUN C H, et al. Effects of bone marrow mesenchymal stem cells transfected with Ang-1 gene on hyperoxia-induced optic nerve injury in neonatal mice[J]. J Cell Physiol, 2018, 233(11): 8567-8577. |
11 | CEN L P, NG T K, LIANG J J, et al. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury[J]. Stem Cells, 2018, 36(6): 844-855. |
12 | PARK M, KIM H C, KIM O, et al. Human placenta mesenchymal stem cells promote axon survival following optic nerve compression through activation of NF-κB pathway[J]. J Tissue Eng Regen Med, 2018, 12(3): e1441-e1449. |
13 | WANG L J, LIU L P, GU X L, et al. Implantation of adipose-derived stem cells cures the optic nerve injury on rats through inhibiting the expression of inflammation factors in the TLR4 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1196-1202. |
14 | PARK M, KIM H M, SHIN H A, et al. Human pluripotent stem cell-derived neural progenitor cells promote retinal ganglion cell survival and axon recovery in an optic nerve compression animal model[J]. Int J Mol Sci, 2021, 22(22): 12529. |
15 | MESENTIER-LOURO L A, TEIXEIRA-PINHEIRO L C, GUBERT F, et al. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation[J]. Stem Cell Res Ther, 2019, 10(1): 121. |
16 | NORDIN S, BR?MERSON A. Complaints of olfactory disorders: epidemiology, assessment and clinical implications[J]. Curr Opin Allergy Clin Immunol, 2008, 8(1): 10-15. |
17 | BERGMAN U, ?STERGREN A, GUSTAFSON A L, et al. Differential effects of olfactory toxicants on olfactory regeneration[J]. Arch Toxicol, 2002, 76(2): 104-112. |
18 | KIM Y M, CHOI Y S, CHOI J W, et al. Effects of systemic transplantation of adipose tissue-derived stem cells on olfactory epithelium regeneration[J]. Laryngoscope, 2009, 119(5): 993-999. |
19 | NODA Y, NISHIZAKI K, YOSHINOBU J, et al. The engraftment and differentiation of transplanted bone marrow-derived cells in the olfactory bulb after methimazole administration[J]. Acta Otolaryngol, 2013, 133(9): 951-956. |
20 | JO H, JUNG M, SEO D J, et al. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder[J]. Biochem Biophys Res Commun, 2015, 467(2): 395-399. |
21 | NISHIZAKI K, YOSHINOBU J, TSUJIGIWA H, et al. The early administration of granulocyte colony-stimulating factor increases the engraftment of transplanted bone marrow-derived cells into the olfactory epithelium damaged by methimazole[J]. Rhinology, 2010, 48(2): 228-232. |
22 | FRANCESCHINI V, BETTINI S, PIFFERI S, et al. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration[J]. Chem Senses, 2014, 39(7): 617-629. |
23 | LEE C H, JEON S W, SEO B S, et al. Transplantation of neural stem cells in anosmic mice[J]. Clin Exp Otorhinolaryngol, 2010, 3(2): 84-90. |
24 | SAMII M, MATTHIES C. Management of 1 000 vestibular schwannomas (acoustic neuromas): the facial nerve—preservation and restitution of function[J]. Neurosurgery, 1997, 40(4): 684-694; discussion 694-695. |
25 | NICHOLAS L, DEEP N L, ROLAND J T Jr. Auditory brainstem implantation[J]. Otolaryngol Clin N Am, 2020, 53(1): 103-113. |
26 | HU Z, ULFENDAHL M, OLIVIUS N P. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve[J]. Brain Res, 2004, 1026(1): 68-73. |
27 | COLEMAN B, FALLON J B, PETTINGILL L N, et al. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons[J]. Exp Cell Res, 2007, 313(2): 232-243. |
28 | SEKIYA T, KOJIMA K, MATSUMOTO M, et al. Cell transplantation to the auditory nerve and cochlear duct[J]. Exp Neurol, 2006, 198(1): 12-24. |
29 | SEKIYA T, HOLLEY M C, HASHIDO K, et al. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration[J]. Proc Natl Acad Sci USA, 2015, 112(26): E3431-E3440. |
30 | PALMGREN B, JIAO Y, NOVOZHILOVA E, et al. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve[J]. Exp Neurol, 2012, 235(2): 599-609. |
31 | CHEN W, JOHNSON S L, MARCOTTI W, et al. Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells[J]. Stem Cells, 2009, 27(5): 1196-1204. |
32 | MANOUKIAN O S, BAKER J T, RUDRAIAH S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration[J]. J Control Release, 2020, 317: 78-95. |
33 | SU Y, ZHANG B L, SUN R W, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418. |
34 | CARRIEL V, GARRIDO-GóMEZ J, HERNáNDEZ-CORTéS P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration[J]. J Neural Eng, 2013, 10(2): 026022. |
35 | UEMURA T, IKEDA M, TAKAMATSU K, et al. Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice[J]. Cells Tissues Organs, 2014, 200(1): 78-91. |
36 | ZHANG Y, WANG W T, GONG C R, et al. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration[J]. Neural Regen Res, 2020, 15(10): 1903-1911. |
37 | SALEHI M, BAGHER Z, KAMRAVA S K, et al. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering[J]. J Cell Physiol, 2019, 234(9): 15357-15368. |
38 | MOZAFARI R, KYRYLENKO S, CASTRO M V, et al. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair[J]. J Venom Anim Toxins Incl Trop Dis, 2018, 24: 11. |
39 | ZHAO J H, DING Y L, HE R, et al. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury[J]. Stem Cell Res Ther, 2020, 11(1): 360. |
40 | ZHANG W J, LUO C, HUANG C, et al. Microencapsulated neural stem cells inhibit sciatic nerve injury-induced pain by reducing P2×4 receptor expression[J]. Front Cell Dev Biol, 2021, 9: 656780. |
/
〈 |
|
〉 |